
M A N N I N G

Dustin Metzgar
Foreword by Scott Hanselman

IN ACTION

Options for .NET command-line dotnet tool

Command Function

new Creates a new project

console Creates a .NET Core console app

classlib Creates a .NET Standard class library

mstest Creates an MSTest unit test

xunit Creates an XUnit unit test

web Creates an ASP .NET Core empty project

mvc Creates an ASP .NET Core MVC Web App

angular Creates an ASP .NET Core with Angular

react Creates an ASP .NET Core with React

reactredux Creates an ASP .NET Core with React and Redux

webapi Creates an ASP .NET Core Web API

sln Creates a blank Visual Studio solution

restore Restores dependencies specified in the project

run Compiles and executes a project

build Builds a project

publish Publishes a project for deployment, including the runtime

test Runs unit tests using the test runner specified in the project

pack Creates a NuGet package for the project

clean Cleans build outputs

sln Modifies a Visual Studio solution file

add Adds project(s) to a solution

list Lists projects(s) in a solution

remove Removes project(s) from a solution

add Adds a reference to the project

package Adds a package reference

reference Adds a project reference

remove Removes a reference from the project

package Removes a package reference

reference Removes a project reference

list Lists references of the project

nuget Starts additional NuGet commands

delete Deletes a package from a NuGet server

locals Clears or lists local NuGet resources

push Pushes a package to a NuGet server

.NET Core in Action

DUSTIN METZGAR

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Cynthia Kane, Kristen Watterson
20 Baldwin Road Review editor: Aleksandar Dragosavljević
PO Box 761 Technical development editor: Mike Shepard
Shelter Island, NY 11964 Project manager: Kevin Sullivan

Copyeditor: Andy Carroll
Proofreader: Melody Dolab

Technical proofreader: Ricardo Peres
Typesetter and cover designer: Marija Tudor

Illustrator: Chuck Larson

ISBN 9781617294273
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

http://www.manning.com

contents
foreword ix
preface x
acknowledgments xii
about this book xiii
about the author xvi
about the cover illustration xvii

1 Why .NET Core? 1
1.1 Architecting enterprise applications before .NET Core 2
1.2 If you’re a .NET Framework developer 3

Your .NET apps can be cross-platform 3 ■ ASP.NET Core
outperforms ASP.NET in the .NET Framework 3 ■ .NET Core is
the focus for innovation 4 ■ Release cycles are faster 4

1.3 If you are new to .NET 4
C# is an amazing language 5 ■ .NET Core is not starting from
scratch 5 ■ Focus on performance 5

1.4 What is .NET Core? 5
1.5 Key .NET Core features 6

Expanding the reach of your libraries 6 ■ Simple deployment on
any platform 7 ■ Clouds and containers 8 ■ ASP.NET
performance 9 ■ Open source 10 ■ Bring your own tools 11

1.6 Applying .NET Core to real-world applications 11
iii

CONTENTSiv
1.7 Differences from the .NET Framework 12
Framework features not ported to Core 12 ■ Subtle changes for
.NET Framework developers 12 ■ Changes to .NET reflection 13

2 Building your first .NET Core applications 15
2.1 The trouble with development environments 15
2.2 Installing the .NET Core SDK 16

Installing on Windows operating systems 16 ■ Installing on
Linux-based operating systems 16 ■ Installing on macOS 16
Building .NET Core Docker containers 17

2.3 Creating and running the Hello World console application 17
Before you build 18 ■ Running a .NET Core application 18

2.4 Creating an ASP.NET Core web application 18
ASP.NET Core uses the Kestrel web server 19 ■ Using a Startup
class to initialize the web server 20 ■ Running the Hello World web
application 21

2.5 Creating an ASP.NET Core website from the template 22
2.6 Deploying to a server 22

Publishing an application 23 ■ Deploying to a Docker
container 25 ■ Packaging for distribution 26

2.7 Development tools available for .NET Core 27
OmniSharp 27 ■ Visual Studio for Mac 28 ■ Visual
Studio 2017 28

3 How to build with .NET Core 32
3.1 Key concepts in .NET Core’s build system 32

Introducing MSBuild 33 ■ Creating .NET projects from the
command line 33 ■ Clearing up the terminology 33

3.2 CSV parser sample project 36
3.3 Introducing MSBuild 39

PropertyGroups 39 ■ Targets 40 ■ ItemGroups 41

3.4 Dependencies 44
3.5 Targeting multiple frameworks 45

4 Unit testing with xUnit 48
4.1 Why write unit tests? 48
4.2 Business-day calculator example 49
4.3 xUnit—a .NET Core unit-testing framework 51

CONTENTS v
4.4 Setting up the xUnit test project 52

4.5 Evaluating truth with xUnit facts 52

4.6 Running tests from development environments 54

4.7 When it’s impossible to prove all cases, use a theory 55

4.8 Shared context between tests 57
Using the constructor for setup 57 ■ Using Dispose for
cleanup 60 ■ Sharing context with class fixtures 62
Sharing context with collection fixtures 63

4.9 Getting output from xUnit tests 65

4.10 Traits 66

5 Working with relational databases 69
5.1 Using SQLite for prototyping 70
5.2 Planning the application and database schema 72

Tracking inventory 72 ■ Creating tables in SQLite 73

5.3 Creating a data-access library 76
Specifying relationships in data and code 80 ■ Updating
data 84 ■ Managing inventory 89 ■ Using transactions
for consistency 91

5.4 Ordering new parts from suppliers 93
Creating an Order 94 ■ Checking if parts need to be ordered 99

6 Simplify data access with object-relational mappers 104
6.1 Dapper 105

Inserting rows with Dapper 108 ■ Applying transactions to
Dapper commands 109 ■ The drawback of a micro-ORM 110
A brief introduction to dependency injection 112 ■ Dependency
injection in .NET Core 114 ■ Configuring the application 122
When to build your own data-access layer 126

6.2 Entity Framework Core 127
Using EF migrations to create the database 129 ■ Running the
tests using EF 130

7 Creating a microservice 134
7.1 Writing an ASP.NET web service 135

Converting Markdown to HTML 135 ■ Creating an ASP.NET
web service 136 ■ Testing the web service with Curl 139

7.2 Making HTTP calls 139

CONTENTSvi
7.3 Making the service asynchronous 141
7.4 Getting data from Azure Blob Storage 142

Getting values from configuration 142 ■ Creating the GetBlob
method 144 ■ Testing the new Azure storage operation 147

7.5 Uploading and receiving uploaded data 148
7.6 Listing containers and BLOBs 150
7.7 Deleting a BLOB 152

8 Debugging 155
8.1 Debugging applications with Visual Studio Code 156

Using the .NET Core debugger 158

8.2 Debugging with Visual Studio 2017 160
8.3 Debugging with Visual Studio for Mac 162
8.4 SOS 163

Easier to get started with a self-contained app 164
WinDBG/CDB 166 ■ LLDB 170

9 Performance and profiling 173
9.1 Creating a test application 174
9.2 xUnit.Performance makes it easy to run performance

tests 177
9.3 Using PerfView on .NET Core applications 184

Getting a CPU profile 184 ■ Analyzing a CPU profile 187
Looking at GC information 191 ■ Exposing exceptions 192
Collecting performance data on Linux 194

10 Building world-ready applications 196
10.1 Going international 197

Setting up the sample application 197 ■ Making the sample
application world-ready 198

10.2 Using a logging framework instead of writing to the
console 202
Using the Microsoft .Extensions.Logging library 204
Internationalization 207 ■ Globalization 207
Localizability review 208

10.3 Using the Microsoft localization extensions library 209
Testing right-to-left languages 211 ■ Invariant culture 213
Using EventSource to emit events 214 ■ Using EventListener to
listen for events 216

CONTENTS vii
10.4 Other considerations for globalization 219
10.5 Localization 219

11 Multiple frameworks and runtimes 222
11.1 Why does the .NET Core SDK support multiple

frameworks and runtimes? 222

11.2 .NET Portability Analyzer 224
Installing and configuring the Visual Studio 2017 plugin 224
Sample .NET Framework project 225 ■ Running the Portability
Analyzer in Visual Studio 226

11.3 Supporting multiple frameworks 230
Using EventSource to replace EventProvider 230 ■ Adding
another framework to the project 233 ■ Creating a NuGet package
and checking the contents 235 ■ Per-framework build
options 235

11.4 Runtime-specific code 238

12 Preparing for release 242
12.1 Preparing a NuGet package 242

How to handle project references 244 ■ NuGet feeds 247
Packaging resource assemblies 248

12.2 Signing assemblies 249
Generating a signing key 250 ■ Delay-signing 250
Signing an assembly in .NET Core 251

appendix A Frameworks and runtimes 253
appendix B xUnit command-line options 255
appendix C What’s in the .NET Standard Library? 257
appendix D NuGet cache locations 260

index 261

CONTENTSviii

foreword
.NET Core is what we’ve always asked for as .NET developers: an open source, fast,
and portable runtime for C#, VB, F#, and more. The book you’re holding is a great
on-ramp to the world of .NET and .NET Core. You’ll learn the why, what, and how of
building systems on this new platform. You’ll utilize a host of open source libraries to
test your code, access databases, build microservices, and ultimately go live! You’ll also
learn how to debug and profile real code in the real world with practical tips and a
pragmatic perspective.

 .NET Core brings the Common Language Runtime not just to Windows, but also
to Mac, Linux, and beyond. You can run .NET Core in a Docker container on an
ARM-based Raspberry Pi if it makes you happy! You can code against the .NET Stan-
dard and create libraries that can be shared among all these platforms as well as iOS,
Android, and even an Apple Watch.

 .NET Core is yours and mine, and I’m thrilled you’re joining us on this adventure.
The .NET community has rallied alongside .NET Core like nothing we’ve seen before
in the Microsoft development community. Over half the pull requests for the .NET
Core framework come from outside Microsoft! You can run .NET Core apps in Azure,
Amazon, Google, and more. Large-scale open source container orchestrators such as
Kubernetes can build sophisticated hybrid systems that include all the languages that
make you productive—all running side by side on the OS of your choice.

SCOTT HANSELMAN

PRINCIPAL PROGRAM MANAGER, .NET, MICROSOFT
ix

preface
Software developers keep learning throughout their careers. It’s part of the appeal of
the field. The more I learn, the more I discover how much I don’t know (the “known
unknown”). The times when I learned the most were the times when an “unknown
unknown” became a “known unknown”—when a whole category of development was
revealed to me that I hadn’t heard of before. Subjects such as performance profiling
and localization never even occurred to me when I started out. Yet they have an
important role in professional software development.

 With so much information available through blogs, tweets, Stack Overflow, confer-
ences, and online documentation, some may wonder if physical books can still be rel-
evant, especially with a subject like .NET Core, where the book may be outdated by
the time it reaches print. I believe the true value of a book, what gives it lasting impact,
is the revelation of the unknown unknown to the reader. The book should cause you
to ask questions you haven’t asked before and provide new context and ways to pro-
cess the avalanche of information out there on a particular topic.

 While this book is about .NET Core, a lot of the concepts have been part of the .NET
Framework for years. By opening .NET Core to other platforms, Microsoft hopes to
reach a new audience of developers. I’m fortunate enough to be in the right place at the
right time to write a book that introduces not only .NET Core but also some important
aspects of software engineering and how they’re accomplished in the .NET ecosystem.
It’s my goal with this book to make you a better developer and pique your curiosity
about aspects of software engineering you may not have thought about before.

 A significant portion of my career has been spent on .NET. My introduction to
.NET happened while I was working as a consultant for enterprise resource planning
(ERP) systems. A salesman for the consulting company didn’t know (or care) that our
x

PREFACE xi
web ERP portal product was written in Java. The customer liked the portal but wanted
to customize it and to use .NET. We worked to rebuild the portal in .NET in a few
months and collaborated with the customer’s development team on their customiza-
tions. That turned out to be my favorite consulting job. Years later, I was fortunate
enough to be hired by Microsoft and work on the .NET Framework itself. I got to work
with many talented developers and wrote code now used by countless applications.

 When .NET Core started, I was excited about its potential and got involved early.
An editor at Manning saw some of my early work and gave me the opportunity to sub-
mit a proposal and table of contents. I’d always wanted to write a book, so I jumped at
the chance. It takes a special kind of naïveté to think you have time to write a book
after the birth of a child and after taking a larger lead role at work. Not only that, but
.NET Core was a moving target in the beginning, which resulted in my having to
throw out or rewrite finished chapters and parts of the table of contents.

 This book took way longer to write than I expected. But I learned a lot along the
way, and I’m pleased with the result. I’m also proud that I was able to deliver most of
the ambitious table of contents I originally planned. I hope you finish this book not
only with the ability to write and publish libraries and applications in .NET Core, but
also with a desire to learn more.

acknowledgments
This book wouldn’t have been possible without the support of my wife, Sherry. Our
son is a handful sometimes, so I really appreciate you giving me time to write. I doubt
I would have finished without your encouragement.

 Thanks also to the editors at Manning who kept the bar high and helped me write
the book I wanted to write: Kristen Watterson, for guiding me to production; Cynthia
Kane, for helping me through writing most of the manuscript; Mark Renfrow, for get-
ting me to my first MEAP release; and Greg Wild, for giving me the chance to write
this book and some useful advice along the way.

 My thanks also go to Mike Shepard, my technical editor, for telling me when my
writing was crap.

 I’d also like to thank Samer Alameer for his help with the localization chapter. He
not only helped me with the Arabic, but also taught me some important points about
localization.

 Finally, thank you to all who bought the early access version of this book, to
Ricardo Peres, for his technical proofread, and to the team of reviewers who provided
invaluable feedback along the way, including Andrew Eleneski, Angelo Simone
Scotto, Bruno Figueiredo, Daniel Vásquez, Daut Morina, Eddy Vluggen, Eric Potter,
Eric Sweigart, George Marinos, Hari Khalsa, Igor Kokorin, Jeff Smith, Jürgen Hötzel,
Mikkel Arentoft, Oscar Vargas, Renil Abdulkader, Rudi Steinbach, Srihari Sridharan,
Tiklu Ganguly, and Viorel Moisei.
xii

about this book
.NET Core in Action was written to help you build libraries and applications in .NET
Core. It takes you through many important aspects of developing high-quality soft-
ware for release. Concepts are introduced “in action” with examples to show their
practical application.

Who should read this book

Whether you’re new to .NET and C# or a seasoned .NET Framework developer, this
book has plenty of useful information for you. While all this information may be avail-
able online through documentation, blogs, and so on, this book compiles and orga-
nizes everything into a format that’s clear and easy to follow. The book assumes that
you have a working knowledge of imperative, object-oriented programming lan-
guages, such as C++ or Java. Although this isn’t an instruction guide on C#, key con-
cepts are explained to aid you. The book also assumes some proficiency with terminals
or command lines and text editors.

How this book is organized: a roadmap

This book has 12 chapters:

 Chapter 1 introduces .NET Core and .NET Standard—what they’re for and why
you should learn them.

 Chapter 2 gets you started creating .NET Core applications.
 Chapter 3 explores the MSBuild build system and how to edit project files.
 Chapter 4 covers unit testing with xUnit. xUnit documentation online tends to

be scattered, so this chapter will be useful as a reference later on.
xiii

ABOUT THIS BOOKxiv
 Chapter 5 introduces working with relational databases, a common thing for
developers to do. .NET Framework developers familiar with relational data-
bases may want to move on to chapter 6.

 Chapter 6 covers object-relational mappers (ORMs). It introduces two different
types of ORMs: Dapper, a micro-ORM, and Entity Framework Core, a full-
featured ORM.

 Chapter 7 explores building a REST endpoint with ASP.NET Core, as well as
how to make HTTP calls to other services.

 Chapter 8 explores different options for debugging, from IDEs to command line.
 Chapter 9 introduces performance testing with xUnit.Performance and profil-

ing with PerfView.
 Chapter 10 covers the internationalization process and how to make applica-

tions world-ready.
 Chapter 11 looks at how to build .NET Core libraries and applications that rely

on framework- or operating system–specific constructs.
 Chapter 12 covers how to prepare your .NET Core library for release and distri-

bution.
 The appendixes contain specific details useful for writing .NET Core applica-

tions, such as target framework monikers and what’s in each version of the
.NET Standard.

About the code

This book contains many examples of source code, both in numbered listings and in-
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light changes from previous steps in the chapter, such as when a new feature adds to
an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 The source code for the book is located at https://github.com/dmetzgar/
dotnetcoreinaction. This GitHub repository contains source for examples in all chap-
ters except chapters 1, 8, and 12, which aren’t focused on particular examples.

 The source code is also available from the publisher’s website at www.manning
.com/books/dotnet-core-in-action.

Book forum

Purchase of .NET Core in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical

https://www.manning.com/books/dotnet-core-in-action
https://www.manning.com/books/dotnet-core-in-action
https://github.com/dmetzgar/dotnetcoreinaction
https://github.com/dmetzgar/dotnetcoreinaction

ABOUT THIS BOOK xv
questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/dotnet-core-in-action. You can
also learn more about Manning’s forums and the rules of conduct at https://forums
.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Online resources

At the end of each chapter, you’ll find a section called “Additional Resources” with
references to books and online resources related to the contents of that chapter.

https://forums.manning.com/forums/dotnet-core-in-action
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

about the author
DUSTIN METZGAR has been developing software professionally
since 2003. His industry experience includes building software
in areas such as enterprise resource planning, supply chain
management, insurance, and loan origination. He joined the
.NET team at Microsoft around the time of the .NET 4.0
release and later worked on Azure services. Currently, Dustin
and his team own a few libraries in the .NET Framework and
.NET Core, an Azure service, and some parts of Visual Studio.

 Dustin lives near Redmond, Washington. When not spending time with his son,
he’s either bicycling or trying to weld sheet metal. You can find Dustin online through
Twitter (@DustinMetzgar) or his blog at http://mode19.net.
xvi

http://mode19.net

about the cover illustration
The figure on the cover of .NET Core in Action bears the caption “A Turk in a pelise.”
The members of the Turkish court would wear certain outer robes linked to the sea-
son; of course, it was the sultan who decided when the season had changed and so the
robes should too. The illustration is taken from a collection of costumes of the Otto-
man Empire published on January 1, 1802, by William Miller of Old Bond Street, Lon-
don. The title page is missing from the collection, and we’ve so far been unable to
track it down. The book’s table of contents identifies the figures in both English and
French, and each illustration also bears the names of two artists who worked on it,
both of whom would no doubt be surprised to find their art gracing the front cover of
a computer programming book 200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market
in the “Garage” on West 26th Street in Manhattan. The seller was an American based
in Ankara, Turkey, and the transaction took place just as he was packing up his stand
for the day. The Manning editor didn’t have on his person the substantial amount of
cash that was required for the purchase, and a credit card and check were both
politely turned down. With the seller flying back to Ankara that evening, the situation
seemed hopeless. What was the solution? It turned out to be nothing more than an
old-fashioned verbal agreement sealed with a handshake. The seller proposed that
the money be transferred to him by wire, and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed
by this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.
xvii

ABOUT THE COVER ILLUSTRATIONxviii
 The pictures from the Ottoman collection, like the other illustrations that appear
on Manning’s covers, bring to life the richness and variety of dress customs of two cen-
turies ago. They recall the sense of isolation and distance of that period—and of every
other historic period except our own hyperkinetic present. Dress codes have changed
since then, and the diversity by region, so rich at the time, has faded away. It’s now
often hard to tell the inhabitant of one continent from that of another. Perhaps,
viewed optimistically, we’ve traded a cultural and visual diversity for a more varied per-
sonal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life as it
was two centuries ago‚ brought back to life by the pictures from this collection.

Why .NET Core?
Learning a new development framework is a big investment. You need to learn how
to write, build, test, deploy, and maintain applications in the new framework. For
developers, there are many frameworks to choose from, and it’s difficult to know
which is the best for the job. What makes .NET Core worth the investment?

 To answer this question, it helps to know where you’re starting from. If you’re
completely new to .NET, welcome! If you’re already a .NET developer, I’ll provide
some guidance as to whether .NET Core is right for you at this time. .NET Core is
still evolving to meet customer demands, so if there’s a critical piece of the .NET
Framework that you need, it may be good to wait a few releases. Whether you’re
already familiar with .NET or are just learning about it, this book will get you writ-
ing professional applications with .NET Core in no time.

This chapter covers
 What is .NET Core?

 The advantages of .NET Core

 Differences from the .NET Framework
1

2 CHAPTER 1 Why .NET Core?
1.1 Architecting enterprise applications before .NET Core
Early in my career, I worked for a car insurance company. Its developers were attempt-
ing to improve the efficiency of claims adjusters. When you get into a car accident, a
representative of the insurance company—a claims adjuster—will sometimes go
directly to the scene of the accident and assess the damage. Adjustors would collect
information, usually on paper, and then head back to the office where they could
enter the data into an application on a desktop or laptop computer. The process was
slow and required a lot of manual work.

 The insurance company wanted to enable claims adjusters to enter the data
directly into the claims system from the scene. They would then be able to get cost
estimates and access the car owner’s insurance policy on the spot. For the insurance
company, this meant quicker claim resolution and less cost. One of the secrets I
learned about the car insurance industry is that they want to get a disbursement to the
claimant quickly. The less time the claimant has to reflect on the estimate, the less
likely they are to negotiate for a higher payout.

 Accessing the claims system from the scene meant changing the architecture to
incorporate mobile devices. Figure 1.1 shows the high-level design.

 In the past, implementing this kind of architecture equated to substantial costs.
Creating cell phone and tablet applications required either hiring developers for both
iOS and Android ports or standardizing on hardware to limit the number of plat-
forms. An adjuster might travel to a remote location with poor or nonexistent cellular

Adjuster
cell phone app

Adjuster
tablet app

Adjuster
laptop

Claims
web app Claim service

Satellite office

Figure 1.1 Claims application high-level diagram

3If you’re a .NET Framework developer
service, so the application needed to operate offline. The different languages and
platforms used in each piece of the architecture made integration and maintenance
difficult. Changes in business logic meant rewriting the logic in several languages. At
the time, scaling was too slow to adjust for demand during the workday, so the hard-
ware requirements were based on peak load. The expenses kept piling up.

 What if you could use not just the same code but the same libraries across the appli-
cations, website, and services? What if you built one app and it worked on iOS, Android,
and Windows? What if your website and services could fit into small containers and elas-
tically scale in response to demand? If all that were possible, it would dramatically
reduce the cost of building and maintaining systems like the claims architecture.

 These questions are no longer hypothetical. .NET Core is a software framework
that makes all of this possible. Developers aren’t confined to a particular language,
operating system, or form factor. .NET Core is engineered to be small and modular,
making it perfect for containers. It’s built and supported by Microsoft but is also open
source, with an active community. Having participated in software projects like the
claims application, I’m excited about the possibilities introduced by .NET Core.

1.2 If you’re a .NET Framework developer
For some .NET Framework components, .NET Core is a reboot, and for others, it’s a
chance to work cross-platform. Because the .NET Framework was built mostly in man-
aged (C#) code, those portions didn’t need code changes to move to .NET Core. But
there are libraries that depend on Windows-specific components, and they had to
either be removed or refactored to use cross-platform alternatives. The same will
apply to your applications.

1.2.1 Your .NET apps can be cross-platform

Once they’re ported to .NET Core, your existing .NET Framework applications can
now work on other operating systems. This is great for library authors who want to
expand their audience or developers who want to use the same code in different parts
of a distributed application. It’s also great if you’d just like to develop in .NET on your
shiny new MacBook without having to dual-boot to Windows.

 Although not all of the Framework has been ported to .NET Core, major portions
have. There are also some API differences. For example, if you use a lot of reflection,
you may need to refactor your code to work with .NET Core. Section 1.7 provides
more information on the differences, which can help you determine if it’s feasible to
port to .NET Core.

1.2.2 ASP.NET Core outperforms ASP.NET in the .NET Framework

The ASP.NET team built a new version of ASP.NET for .NET Core called ASP.NET
Core. The difference in performance between ASP.NET Core and Framework
ASP.NET is many orders of magnitude. Much of ASP.NET was built on the legacy Sys-
tem.Web library, and the .NET Framework supports older versions of ASP.NET projects.

4 CHAPTER 1 Why .NET Core?
That constraint has restricted ASP.NET’s evolution. With .NET Core, Microsoft decided
to rewrite the whole stack. Although this does mean breaking changes, the gains are
worth the effort of migrating.

1.2.3 .NET Core is the focus for innovation

One of the critical principles of the .NET Framework is that new releases shouldn’t
break existing applications. But this backwards compatibility is a double-edged sword.
A lot of effort goes into making sure that changes made in new releases of the .NET
Framework usually won’t break existing applications. But this goal of avoiding break-
ing changes restricts innovation. Changes to the .NET Framework need thorough jus-
tification (usually from customers), exhaustive testing, and approval from many levels
of product groups. I’ve been in meetings where people argued over one- or two-line
code fixes, which caused me to reconsider my life choices.

 With .NET Core, it’s much easier for internal Microsoft teams to work on their
library independent of the core libraries. Changes to core libraries, like System.Col-
lections, still require the same rigor as with .NET Framework, but it’s easier to make
substantial changes to ASP.NET Core or Entity Framework Core without being con-
strained by backwards compatibility. This allows for greater innovation.

 .NET Framework ships as one product, whereas Core is broken up into pieces.
Developers can now choose which version of a library they want to use, as long as it’s
outside the .NET Standard Library, and .NET Core teams can innovate with less diffi-
culty. This is why, in the future, you’ll see only bug fixes for the Framework. Core will
get all the new features.

1.2.4 Release cycles are faster

If you’ve ever encountered a bug in the .NET Framework and reported it to Microsoft,
you’re aware of how long it takes for a fix to be released. The Framework has long
release cycles, usually measuring at least a year, and there are tiny windows during
these cycles for feature work. Each code change can cause issues in unexpected places
elsewhere in the Framework. To give each team enough time to test, there are many
times when code changes are restricted or heavily scrutinized. If you find a bug in
.NET, you’re better off finding a workaround than waiting for an update.

 .NET Core follows a faster release cadence. Developers can use nightly builds to
test early. Libraries that aren’t part of the .NET Standard Library can release at their
own pace. Because everything is open source, any developer can propose a fix if
Microsoft doesn’t respond quickly enough. If the fix isn’t accepted, the discussion is
held in public so everyone can see why that decision was made.

1.3 If you are new to .NET
On Windows platforms, the .NET Framework hasn’t had much competition. Microsoft
could make changes to everything from the OS kernel layers up through the high-
level .NET libraries. By taking .NET to other platforms, the playing field has changed.

5What is .NET Core?
.NET must now compete with all the other development frameworks out there. Here
are some things that set .NET apart.

1.3.1 C# is an amazing language

The flagship language of .NET, C#, has many distinguishing features, such as Lan-
guage Integrated Query (LINQ) and asynchronous constructs, which make it power-
ful and easy to use. It’s not my intention to teach C#, but I will be using it throughout
this book. You’ll get to experiment with some of the many cool features of C#.

 C# also continues to innovate. The C# team designs the language openly so that
anyone can make suggestions or participate in the discussion. The compiler (Roslyn)
is entirely modular and extensible. I recommend picking up another Manning book,
C# in Depth, Fourth Edition (2018) by Jon Skeet, to learn more.

1.3.2 .NET Core is not starting from scratch

.NET has been around since before 2000. The Framework code has been hardened
over the years, and its developers have benefited from the experience. Much of the
Framework code that has been ported to Core is untouched. This gives .NET Core a
head start in terms of having a reliable framework for building applications. .NET
Core is also completely supported by Microsoft. A lack of support can keep some orga-
nizations from adopting open source software. Microsoft’s support decreases the risk
of using Core for your applications.

1.3.3 Focus on performance

The Common Language Runtime (CLR) team at Microsoft has been optimizing gar-
bage collection and just-in-time (JIT) compilation since the beginning of .NET, and
they’re bringing this highly tuned engine to .NET Core. They also have projects
underway to perform native compilation of .NET Core applications, which will signifi-
cantly reduce startup times and the size on disk—two important characteristics for fast
scaling in container environments.

1.4 What is .NET Core?
To understand .NET Core, it helps to understand the .NET Framework. Microsoft
released the .NET Framework in the early 2000s. The .NET Framework is a Windows-
only development framework that, at its lowest level, provides memory management,
security, exception handling, and many other features. It comes with an extensive set
of libraries that perform all kinds of functions, from XML parsing to HTTP requests.
It also supports several languages and compiles them into the same common interme-
diate language, so any language can use a library built in any other language. These
key concepts are also present in .NET Core.

 In 2016, Microsoft acquired Xamarin and released .NET Core 1.0. Xamarin was
responsible for porting large parts of the .NET Framework to run on Linux/Unix-
based operating systems in the past. Although some of the code could be shared
between the .NET Framework, Xamarin, and the new .NET Core, the compiled

6 CHAPTER 1 Why .NET Core?
binaries could not. Part of the effort of building .NET Core was to standardize so that
all .NET implementations could share the same libraries. Figure 1.2 shows what this
standardization looks like.

 Xamarin and the .NET Framework were previously silos, where binaries couldn’t be
shared between them. With the introduction of the .NET Standard Library and the com-
mon infrastructure, these two frameworks are now part of a unified .NET ecosystem.

 What is .NET Core, then? In figure 1.2 it appears that .NET Core is just another
framework that includes UWP (Universal Windows Platform) and ASP.NET Core. In
order to make .NET Core a reality, however, the authors also created the .NET Standard
Library and the common infrastructure. .NET Core is really all three of these things.

1.5 Key .NET Core features
.NET Core borrows the best from the .NET Framework and incorporates the latest
advancements in software engineering. The following sections identify a few of the
distinguishing features of .NET Core.

1.5.1 Expanding the reach of your libraries

With .NET Core you can write your application or library using the .NET Standard
Library. Then it can be shared across many platforms. In figure 1.3, MyLibrary is
deployed across cloud services, web servers, and many client platforms.

 The same library can work in your backend service on your premises or in the
cloud and also in your client application running on a cell phone, tablet, or desktop.
Instead of building separate apps for iOS, Android, and Windows, you can build one
app that works on all platforms. .NET Core is small and perfect for use in containers,
which scale easily and reduce development time.

.NET Framework

WPF Windows Forms

ASP.NET

.NET Core

.NET Standard Library
One library consistent across app models

UWP

Xamarin

iOS

OS X
Android

Common infrastructure

ASP.NET Core

LanguagesCompilers Runtime components

Figure 1.2 .NET Framework, .NET Core, and Xamarin all implement the same standard called
the .NET Standard Library.

7Key .NET Core features
.NET Core and the .NET Standard Library establish a common standard. In the past
when a new version of an operating system or a new device came along, it was the
responsibility of the developer to rebuild their application or library for that new run-
time or framework and distribute the update. With .NET Core there’s no need to
rebuild and redistribute. As long as the new runtime or framework supports all of
your dependent libraries, it will support your application.

1.5.2 Simple deployment on any platform

Microsoft products tend to have complex installation processes. COM components,
registry entries, special folders, GAC—all are designed to take advantage of Windows-
only features. The .NET Framework relies on these constructs, which makes it unsuit-
able for other operating systems.

 When shipping an application that relies on the .NET Framework, the installer has
to be smart enough to detect whether the right .NET Framework version is installed,
and if not, provide a way for the user to get it. Most modern Windows versions include

MyApp

Apps and libraries written
with .NET Standard Library
can deploy to any platform.

MyLibrary

MyService

MyLibrary

MyWebApp

MyLibrary

Figure 1.3 .NET Core development

8 CHAPTER 1 Why .NET Core?
the .NET Framework, and this makes certain applications easier to install, but it can
cause complications if the application uses features that aren’t installed by default,
such as ASP.NET integration with IIS or WCF components.

 Another complication comes from patches. Patches that include bug fixes or secu-
rity updates can be distributed to customers via Windows updates or through the
Microsoft Download Center. But the .NET Framework you test your application on
may have different patches than the ones customers are using. It’s often difficult to
determine what causes strange behavior in an application if you assume that the .NET
Framework is the same for all customers.

 .NET Core’s modular design means that you only include the dependencies you
need, and all of those dependencies go into the same folder as your application.
Deploying an application is now as simple as copying a folder—what Microsofties
refer to as “xcopy-deployable” (xcopy being a Windows tool for copying files and fold-
ers). Another advantage to this approach is that you can have multiple versions run-
ning side by side. This strategy is key to making the deployment experience consistent
on all platforms.

1.5.3 Clouds and containers

In cloud systems, it’s important to strive for higher density—serving more customers
with less hardware. The smaller the footprint of an application, the higher the density.

 The most common approach to deploying an application in cloud systems has
been the virtual machine. A virtual machine allows an operating system to be installed
on virtual hardware. The virtual machine is stored in a small number of files that can
be easily replicated. But virtual machines have several problems:

 Size—A typical virtual machine file is gigabytes, if not tens of gigabytes. This
makes it time-consuming to transfer them across networks, and it has significant
requirements on disk space.

 Startup times—Starting a virtual machine means starting an operating system.
For Windows, this presents a challenge, because it may take minutes to start a
new machine. This can make handling sudden bursts of traffic difficult.

 Memory—The virtual machine needs to load an entire operating system into
memory, along with the applications. This means a lot of a host’s memory can
be redundant and therefore wasted.

 Inconsistency—Although the same virtual machine can be copied to multiple
hosts, the hosts have to provide the same virtualized hardware, which can be
dependent on the physical hardware. There’s no guarantee that a virtual
machine will operate the same way, if at all, on any given host.

Containers solve the issues of virtual machines by also virtualizing the operating sys-
tem— the container only holds the application and its dependencies. File sizes are
many times smaller, startup times are measured in seconds, only the application is
loaded in memory, and the container is guaranteed to work the same on any host.

9Key .NET Core features
 The .NET Framework was designed to be built into Windows, and it doesn’t fit well
into containers. A Framework application depends on the Framework being installed.
Given the clear advantages of containers, one of the design decisions of .NET Core
was to make it modular. This means that your .NET Core application can be “pub-
lished” so that it and all of its dependencies are in one place, which makes it easy to
put into a container.

1.5.4 ASP.NET performance

ASP.NET is a set of libraries built into the .NET Framework for creating web applica-
tions. It was released in 2002 with the first version of the .NET Framework, and it has
continued to evolve. Despite its success (being used by many high-profile organiza-
tions, including Stack Overflow), there was a feeling among the ASP.NET team that
they were losing developers because ASP.NET performance isn’t competitive, and
because it only works on the Windows platform.

 A company called TechEmpower runs a benchmark of web application frameworks
every few months and provides a ranking in several categories. The benchmarks are run
on Linux, so Windows-only frameworks are not included. For the ASP.NET team, this
was a problem. There are many frameworks for writing cross-platform web applications,
and their performance numbers are impressive. Some Java frameworks, like Rapidoid
and Undertow, were posting astronomical numbers: Rapidoid with 3.7 million plain-
text requests per second and Undertow with 2.9 million (shown in figure 1.4).

Figure 1.4 TechEmpower benchmark (round 14), May 2017

10 CHAPTER 1 Why .NET Core?
On round 11 of the TechEmpower benchmark, ASP.NET MVC on the Mono frame-
work was included in the testing. The results weren’t good. ASP.NET on Mono pro-
duced a paltry 2,000 plaintext requests per second. But because Mono wasn’t created
by Microsoft, it wouldn’t have received the same amount of performance tuning as
the regular .NET Framework. To get a fairer comparison, the ASP.NET team decided
to run a benchmark with .NET 4.6 on the same hardware as TechEmpower. The result
was around 50,000 requests per second, not even close to Node.js (320,000 requests
per second) or any of the other top frameworks on the TechEmpower list.

 The pitifully low score wasn’t exactly a surprise. As mentioned before, the
ASP.NET team knew some of the hurdles that stood in the way of being competitive
with frameworks like Node.js. These hurdles could only be cleared by rewriting the
whole thing. One major difficulty with ASP.NET was that it needed to support custom-
ers’ legacy code, including “classic ASP,” which preceded .NET. The only way to free
ASP.NET from the legacy code burden was to start over.

 The ASP.NET team embarked on building ASP.NET Core, and many months later
they celebrated crossing the 1 million requests per second mark (as you can see in fig-
ure 1.4). There is a team dedicated to pushing that number even higher, as well as to
improving the performance of many other real-world scenarios.

 Improving the performance of ASP.NET is indicative of a shift in Microsoft’s think-
ing. Microsoft realizes that it has to be competitive to win developers. It also has to
compete on platforms other than Windows. ASP.NET was the driving force behind the
creation of .NET Core.

1.5.5 Open source

Historically, Microsoft has been very tight-lipped about new products and features
under development. There are good reasons for this. First, the competition has less
time to respond if they find out about a feature on the day it ships. Also, if a feature
was targeted for a particular release date and wasn’t done on time, it could be post-
poned without causing an issue, because customers didn’t know about it. Plus, it
always helps to have new stuff to announce at conferences.

 But modern software developers aren’t content to ask for a feature and hope it’s
delivered in the next release, which could be a year away. This is especially true when
there may be an open source project that could fulfill their needs. As large companies
warm to open source software, even the most faithful Microsoft developers turn to
other frameworks and libraries to get their own projects done on time and within bud-
get. Microsoft needed to make a change.

 Exposing the source for the .NET Framework was the first step. The .NET Frame-
work source code has been publicly available for years at https://referencesource
.microsoft.com and also on GitHub. The Reference Source website makes it easy to
search the source code of the .NET Framework.

 It’s one thing to expose the source and quite a different thing to accept external
contributions. The .NET Core developers not only wanted to allow external

https://referencesource.microsoft.com
https://referencesource.microsoft.com

11Applying .NET Core to real-world applications
contributions, they also wanted to include the community in the design and develop-
ment. This led to a lot more transparency. Every week, the ASP.NET Core team holds
a live community standup meeting at http://live.asp.net. The code for .NET Core has
been available publicly on GitHub from the start, and anyone can make a pull request.
Community members can also create bugs and feature requests in GitHub. .NET Core
marked a significant change in direction for Microsoft regarding open source.

1.5.6 Bring your own tools

Because .NET Core works on many platforms, command-line functionality is crucial
for .NET Core tooling. For some Linux variants, or when working with Docker con-
tainers, a terminal may be all that’s available. The .NET Command-Line Interface
(CLI) was designed for this purpose.

 I can’t make any assumptions about what kind of editor you’ll use to write your
code. You can use an integrated development environment like Visual Studio or a sim-
ple text editor like vi or emacs. There are also plenty of tools that feature syntax high-
lighting, like Notepad2 or Sublime. This book focuses on the use of the CLI so that
you’ll be able to try all the examples regardless of which platform you’re using.

1.6 Applying .NET Core to real-world applications
What sets .NET Core apart from other frameworks when it comes to building real-world
applications? Let’s look back at the claims architecture from figure 1.1. A claims
adjuster goes to the scene of an accident and enters the evidence (notes and photos, for
example) into a software application that generates the estimate. In order to determine
what evidence needs to be collected, the software may use complex, proprietary busi-
ness logic. The adjuster needs to gather this information regardless of connectivity, so
it will be helpful to have the business logic available in the mobile application.

 Rewriting all the business logic in a language suitable for a mobile application
introduces a maintenance issue. Both the team working on the server side and the
team writing the mobile application must update their codebases with any changes to
the business logic. Ownership gets split between teams, and keeping in sync becomes
difficult. With Xamarin support for the .NET Standard library, web services and
mobile applications alike can use the same business logic library. Claims adjusters get
consistent behavior, and maintenance costs go down.

Scaling in response to demand
In the case of a natural disaster, such as a hurricane or flood, claims adjusters will
be working overtime, increasing demand. The claims architecture needs to scale to
meet this demand. With the improved performance of ASP.NET Core and the ability
to deploy .NET Core applications to containers, adjusters can rely on the claims sys-
tem to handle the workload. This is important to the insurance company, because
downtime of backend systems directly affects customer experience and slows down
adjusters.

http://live.asp.net

12 CHAPTER 1 Why .NET Core?
1.7 Differences from the .NET Framework
.NET Core is not simply the .NET Framework for Linux and Mac. Rather than port
all of the .NET Framework, Microsoft has taken the approach of waiting to see what
customers want. There has to be enough customer interest in a framework feature to
persuade Microsoft to allocate the resources to do a port. One of the obstacles to
porting is that the teams that originally built these features have almost completely
moved on. Luckily for ASP.NET customers, the ASP.NET team was the driver behind
.NET Core. MVC, Web API, and SignalR are either all available in .NET Core or are
on the roadmap.

1.7.1 Framework features not ported to Core

The following list identifies Framework features not currently ported to .NET Core, but
I provide this with the knowledge that things can change. Some features don’t apply to
non-Windows platforms. There are other features that Microsoft doesn’t want to carry
forward into the future, either because there are better replacements or because the
feature was problematic in some way (insecure, hard to maintain, and so on):

 WPF/XAML—The Windows Presentation Foundation is only meant for user
interfaces. The .NET Standard Library doesn’t include UI libraries, and .NET
Core doesn’t attempt to provide a cross-platform UI framework.

 Transactions—This library made it easy to create distributed transactions, but it
relies on Windows-specific components, so it’s not readily portable to .NET Core.

 AppDomains—These were useful for isolating assemblies so they could be
unloaded without killing the process, which is great for applications that allow
plugins. They rely on some Windows-specific constructs that wouldn’t work on
other operating systems.

 .NET remoting—Remote objects have been succeeded by REST services.
 ASMX—This was an old way of writing web services that has been replaced by

Web API.
 Linq to SQL—This has been replaced by Entity Framework, which is touched

upon in chapter 6.
 WCF services—Windows Communication Foundation client capabilities are

available in .NET Core, but you can’t create services.
 WF—Windows Workflow Foundation depends on XAML, WCF services, and

transactions, among other .NET Framework-only features.

1.7.2 Subtle changes for .NET Framework developers

Experienced .NET Framework developers may encounter a few surprises when work-
ing in .NET Core. Writing new code should be relatively straightforward, because
you’re unlikely to use older constructs like HashTable or ArrayList. Visual Studio’s
IntelliSense will also indicate whether a type, method, property, and so on, is
supported in .NET Core. In figure 1.5, you can see the auto-completion window flag-
ging members that are different in .NET Core.

13Additional resources
Figure 1.5 Visual Studio IntelliSense indicates whether a class or member is available in .NET Core.

.NET PORTABILITY ANALYZER

If you’re attempting to convert an existing .NET application to .NET Core, the best
place to start would be the .NET Portability Analyzer. It’s available both as a command-
line application and a Visual Studio plugin. This tool creates a detailed report with use-
ful suggestions wherever possible. We’ll explore this tool further in chapter 11.

1.7.3 Changes to .NET reflection

Reflection works differently in .NET Core than in the .NET Framework. The most
noticeable difference is that a lot of the operations normally available in the Type
class are no longer available. Some have been moved to a new class called TypeInfo.
You’ll see examples of this later in the book.

Additional resources
To find out more about .NET Core and C#, try the following resources:

 Microsoft’s .NET Core Guide: https://docs.microsoft.com/en-us/dotnet/core/
 C# in Depth, Fourth Edition, by Jon Skeet (Manning, 2018): http://mng.bz/6yPQ
 ASP.NET Core Community Standups: http://live.asp.net

Target
framework

Indicates member
not available in
some frameworks

Lists availability
of member by
framework

https://docs.microsoft.com/en-us/dotnet/core/
http://mng.bz/6yPQ
http://live.asp.net

14 CHAPTER 1 Why .NET Core?
Summary
The software development industry is constantly evolving. Everything is challenged
and improved, from languages to frameworks to tools to methodologies. The .NET
Framework has reached a point where it’s too rigid and monolithic to keep up with its
competitors. .NET Core is the necessary next step in the evolution of .NET. It com-
bines the best of the .NET Framework with the practices used in modern software
development.

 This chapter introduced some of the features of .NET Core:

 Libraries that can function on multiple frameworks and operating systems
 Simple deployment for containers
 High-performance web services with ASP.NET Core
 Strong CLI support that enables developers to use their preferred tools

Learning a new software development framework requires an investment of time and
resources. Even if you’re familiar with the .NET Framework, there’s much to learn
about .NET Core. With .NET Core you can write code that’s portable across all plat-
forms, use containers to control scaling, and build high-performance web applica-
tions. In this book, we’ll explore some of what .NET Core is capable of, and why it’s
worth the investment.

Building your first
.NET Core applications
In this chapter, you’ll learn how to set up your development environment, create
an application, and deploy that application to another machine. You’ll start by
installing the .NET Core SDK, which includes the .NET Command-Line Interface
(CLI) that’s used throughout this book. From there, you’ll create a console applica-
tion and an ASP.NET web application. Then you’ll deploy those applications.

NOTE FOR EARLY ADOPTERS If you’ve experimented with .NET Core in the
past, you may have used DNVM, DNU, or DNX. Although these tools were
useful in the beginning, they had a few problems and inconsistencies. They
have been deprecated in favor of the .NET CLI.

2.1 The trouble with development environments
There’s something special about development environments. They accumulate a
combination of tools, files, and settings that allow your application to work perfectly

This chapter covers
 Installing the .NET Core SDK

 Using the .NET CLI

 Creating and executing a .NET Core application
15

https://nodejs.org/

16 CHAPTER 2 Building your first .NET Core applications
during development but fail mysteriously everywhere else. Testers get frustrated when
I tell them, “It works on my machine.” I’ve been in several situations where a test was
“flaky,” sometimes working and sometimes not, only to discover that one of the build
machines in the pool didn’t have a component installed.

 Making software behave consistently from development to test to production starts
with the development framework. .NET Core is designed to be self-contained. It
doesn’t depend on Windows-specific resources like the .NET Framework—the .NET
CLI is consistent on each OS. Plus, .NET Core is tailored to containers. The same con-
tainer can be used for development, test, and production, reducing the friction tradi-
tionally experienced when crossing these boundaries. In the following sections, we’ll
explore the key features of .NET Core that produce a consistent developer experience.

2.2 Installing the .NET Core SDK
.NET Core can be installed on Windows, several Linux distros, macOS, and Docker.

 An easy-to-remember URL for .NET is https://dot.net. Interestingly, you won’t find
much mention of the word “Core” on the .NET site. This is to clarify for newcomers to
.NET that .NET Framework, .NET Standard, and .NET Core are all part of one large
family. Go to the .NET site, click the Get Started button, and pick the operating sys-
tem you’re working on.

2.2.1 Installing on Windows operating systems

There are two methods for installing on Windows: Visual Studio and command line.
Visual Studio 2017 comes with everything you’ll need for .NET Core development,
and the Community edition is free. It installs the .NET SDK, which has the command-
line tools as well. Because the command-line tools are universal to all operating sys-
tems, this book will focus on that version. The Get Started portion on the .NET site
covers both the .NET SDK and Visual Studio installations.

2.2.2 Installing on Linux-based operating systems

The process for installing .NET Core on Linux varies depending on the distro. The
instructions change constantly, so by the time this book goes to print, any instructions
I included here would likely be out of date. See Microsoft’s .NET site (https://
dot.net), click the Get Started button, choose “Linux,” and pick your Linux distribu-
tion for the latest instructions.

2.2.3 Installing on macOS

.NET Core supports OS X version 10.11 and later. The best way to install is with the

.pkg file available for download from the .NET site (https://dot.net). Click the Get
Started button and choose “macOS.”

 You can also install Visual Studio for Mac, which will have the option to install the
.NET Core SDK.

https://dot.net
https://dot.net
https://dot.net
https://dot.net

17Creating and running the Hello World console application
2.2.4 Building .NET Core Docker containers

When working with Docker, you only need to get the “dotnet” base image, which
includes the .NET SDK. Simply run the following command using the Docker CLI:

docker run -it microsoft/dotnet:latest

GETTING STARTED WITH DOCKER If you’re not familiar with Docker, I encourage
you to check out Docker in Action by Jeff Nickoloff (Manning, 2016). You can get
started with Docker by going to https://www.docker.com/get-docker and
downloading the Docker Community Edition. The Docker site includes lots of
easy-to-follow documentation for installing Docker and running containers.

2.3 Creating and running the Hello World console application
The .NET Core SDK includes a sample Hello World application, and the instructions
for creating it are the same on every platform. Execute the following commands on
the command line or terminal:

mkdir hwapp
cd hwapp
dotnet new console

The command dotnet new console creates a new Hello World console application
in the current folder. When new versions of .NET Core are released, it can be helpful
to run this command to see if there are any updates to the fundamental pieces of
.NET Core.

 The dotnet new console command creates two files: Program.cs and
hwapp.csproj. Program.cs should look similar to the following listing.

using System;

namespace hwapp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World");
 }
 }
}

This is a straightforward C# program. If you’re familiar with C#, you’ll know that the
same code will work in other versions of .NET.

 The hwapp.csproj file gets its name from the folder it was created in. The following
listing shows the contents of this file.

Listing 2.1 Program.cs from the Hello World application

https://www.docker.com/get-docker

18 CHAPTER 2 Building your first .NET Core applications

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

</Project>

The csproj file describes the project. By default, all source code files in the project
folder are included, including any subfolders. .NET Framework developers may be
used to seeing each source code file listed explicitly in the csproj, but since the con-
vention for .NET projects is to keep all the files under the project folder, .NET Core
by default includes everything in the project folder. The OutputType property indi-
cates that this project is an executable application.

2.3.1 Before you build

You now have the Hello World code and the project description, but there’s a critical
step that needs to take place before you build or run your application. You need to
restore your packages. You have a set of dependencies for your project, and each
dependency is a package that may also have its own dependencies. The package-
restore step expands the full tree of dependencies and determines which versions of
each package to install.

 The command to restore packages is dotnet restore. Try running it to see how
it works. If you’re adding a new package reference to your csproj, it’s a helpful com-
mand for testing whether the reference is correct.

 The .NET Core SDK keeps a local cache of the packages you use. If a particular
version of a package isn’t in the cache, it’s downloaded when you do the package
restore. Since .NET Core 2.0, the .NET Core SDK will perform a restore implicitly
where necessary.

2.3.2 Running a .NET Core application

When you’re using the .NET Core SDK, your application will be built automatically
when needed. There’s no need to worry about whether or not you’re executing the
latest code.

 Try running the Hello World application by executing dotnet run at the com-
mand line or terminal.

2.4 Creating an ASP.NET Core web application
Now that you’ve tried the Hello World console application, let’s look at a Hello World
ASP.NET Core application. This application will create an HTTP service that returns
“Hello World” to a GET request.

Listing 2.2 hwapp.csproj from the Hello World console application

19Creating an ASP.NET Core web application
 ASP.NET is the web framework for .NET, and ASP.NET Core is a new version built
from the ground up for .NET Core. In this book, I’ll briefly introduce ASP.NET Core.
To learn more about ASP.NET Core, check out ASP.NET Core in Action by Andrew Lock
(Manning, 2018).

 First, create a new .NET Core application. Create a new folder called hwwebapp.
Execute dotnet new web in the hwwebapp folder. Inside the folder, you’ll find the
following files:

 hwwebapp.csproj
 Program.cs
 Startup.cs
 wwwroot

The hwwebapp.csproj file has a package reference to Microsoft.AspNetCore.All, as
shown in the following listing.

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.AspNetCore.All"
 Version="2.0.0" />
 </ItemGroup>

</Project>

2.4.1 ASP.NET Core uses the Kestrel web server

Web applications need a web server, and Kestrel is the web server that was built for
ASP.NET Core. It can be started from a console application and is included as part of
the Microsoft.AspNetCore.All metapackage (a package that references a bunch of
other packages). In the following listing, Kestrel is included as part of the default
WebHost builder.

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

Listing 2.3 hwwebapp.csproj package reference to Microsoft.AspNetCore.All

Listing 2.4 Program.cs for an ASP.NET Core web application

You won’t use this
folder in this example.

PackageReference references
a NuGet package.

The usings are trimmed to
only what’s needed.

20 CHAPTER 2 Building your first .NET Core applications
namespace hwwebapp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
 }
}

2.4.2 Using a Startup class to initialize the web server

Next, let’s look at the Startup class referenced from Program.cs. This class is used by
ASP.NET to define how requests will be handled. Your web service will simply return
“Hello World” in the response.

 The Startup.cs file included with the template includes more than is necessary.
The following listing shows a trimmed-down version of this class.

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Logging;

namespace hwwebapp
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.Run(async (context) =>
 await context.Response.WriteAsync(
 "Hello World")
);
 }
 }
}

Listing 2.5 Trimmed-down Startup.cs file for a Hello World web application

Starts the Kestrel
web server

References the Startup
class in Startup.cs

These are created by
dependency injection,
covered in chapter 6.

Log messages go
to the console.

Exceptions are hidden from web
pages except in development mode.

Responds to all requests
with “Hello World”

21Creating an ASP.NET Core web application
Whereas the Program class starts the web server, the Startup class starts the web
application.

 There’s a lot of stuff to unpack in listing 2.5. This book doesn’t delve deeply into
ASP.NET Core, but anonymous methods, async/await, dependency injection, and log-
ging are all covered in later chapters.

2.4.3 Running the Hello World web application

To run the web application, execute the dotnet run command at the command
line, just as before. This starts the web server, which should produce output like the
following:

Hosting environment: Production
Content root path: /hwwebapp
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

The output of dotnet run includes the web
address for the Kestrel server. In this example it’s
http://localhost:5000. Open a browser and navigate
to this address. Figure 2.1 shows the Hello World
web application running in the browser.

For those not familiar with C#
If you aren’t familiar with C#, the => may be confusing. This is used to create an anon-
ymous method—anonymous meaning that it has no name. The arguments for the
method go on the left side of the =>, which is the HttpContext in listing 2.5. The
method definition goes on the right side. If the method needs only one line and returns
a value, you can forgo the brackets, return, and ; and keep only the expression.

In this case, you want to write “Hello World” in the HTTP response and return the
asynchronous Task object. We’ll cover the subject of tasks later in the book.

Pros and cons of anonymous methods
Anonymous methods in C# can provide a huge productivity boost. In addition to mak-
ing code more readable, there’s another often-overlooked benefit: you don’t have to
figure out a name for a method. I’m surprised by how much time I spend thinking
about how to name various artifacts in my code.

Some of the drawbacks to anonymous methods are evident in debugging. Anonymous
methods still get names in stack traces, just not recognizable ones. It’s also difficult
to manually create breakpoints on or in anonymous methods from a debugger when
you don’t know the method name.

The web address
for the app

Figure 2.1 Hello World web
application in the browser

22 CHAPTER 2 Building your first .NET Core applications
2.5 Creating an ASP.NET Core website from the template
In the previous section, you created a minimal ASP.NET Core web application. That
may be a useful starting point for creating a service, but a website requires a lot more
work. The .NET Core SDK includes a template for ASP.NET Core websites to help get
you started. If you’re familiar with ASP.NET development in Visual Studio, this is
closer to the New Project scenario.

 To use the template, start from a new folder called “hwwebsite,” and in that folder,
execute this command: dotnet new mvc. List the contents of the folder, and you’ll
find a lot more files than you created in the previous template.

 Run the dotnet run command to get the web server started as before. Then visit
http://localhost:5000 in your browser to see the default website.

2.6 Deploying to a server
Now that you’ve written some applications, you can try deploying them to a server.
.NET Core was designed to deploy by simply copying files. It helps to know where
these files come from.

 In figure 2.2, the .NET CLI package contains some assemblies that are installed
into the dotnet folder. They’re enough to power the .NET CLI (command-line inter-
face) but not much else. When the SDK does the restore, it determines what packages
it needs to download based on your dependencies. Kestrel is an example of a depen-
dency that isn’t part of .NET Core but is necessary to run an ASP.NET application.

Dev machine

/dotnet (2) dotnet restore

/bin

System.Collections.dll

System.Net.Sockets.dll

System.Console.dll

.NET CLI package
NuGet

(1) dotnet new

static void Main(string[] args)
{
 Console.WriteLine("Hello World!");
}

Initial .NET CLI package
assemblies enable the
command-line interface.

Dependency packages
determined by SDK are
downloaded from NuGet.

Figure 2.2 Locations of components and assembly files for .NET Core

23Deploying to a server
The .NET CLI downloads these dependency packages from a package store called
NuGet and stores them centrally, so you don’t have to download them for every proj-
ect you write.

2.6.1 Publishing an application

The .NET CLI provides a way to consolidate all the binaries needed to deploy your
application into one folder. From the folder containing the Hello World console
application (hwapp), execute dotnet publish -c Release from the command line
or terminal. The console output indicates to which folder the binaries are published.

 Change to the publish folder under the output folder. There should be four files:

 hwapp.deps.json
 hwapp.dll
 hwapp.pdb
 hwapp.runtimeconfig.json

Copy these files to another machine that has the .NET Core SDK installed. Then, to
execute the application, run the command dotnet hwapp.dll from the folder con-
taining the copied files.

 In this example, only the binaries built for the project, and any included packages,
are published. This is called a framework-dependent deployment. When you deploy the
files from the publish folder, you need to have the .NET Core SDK installed on the tar-
get machine.

PUBLISHING A SELF-CONTAINED APPLICATION

There’s another way to create an application that will include all of the .NET Core
assemblies, so it can run on a machine that doesn’t have the .NET Core SDK installed.
This is called a self-contained application.

 To create a self-contained application, you’ll first need to be explicit about what
runtimes your application can run on. This is done by adding the Runtime-
Identifiers property to your project file, as shown in the following listing.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64;linuxmint.17.1-x64
 </RuntimeIdentifiers>
 </PropertyGroup>
</Project>

Now you can create a self-contained application by using the runtime identifier in the
publish command, as follows:

dotnet publish -c Release -r linuxmint.17.1-x64

Listing 2.6 Add RuntimeIdentifiers to the hwapp.csproj file

24 CHAPTER 2 Building your first .NET Core applications
Listing the contents of the bin\Release\netcoreapp2.0\linuxmint.17.1-x64\publish
folder will reveal a lot of files. Figure 2.3 illustrates what this publishing step looks like.

 Packages are stored either in the local .NET CLI cache or in a NuGet package
library. The restore process pulls all the files to the cache. The dotnet publish

command with the runtime option collects all the files necessary, including the bina-
ries built from your project code, and puts them into the publish folder. The full con-
tents of this folder can then be copied to other machines or containers.

/publish

MyApp.exe

System.Console.dll

Dev machine

/dotnet (2) dotnet restore

(3) dotnet publish(3) dotnet publish

/bin

System.Collections.dll

System.Net.Sockets.dll

System.Console.dll

The publish command collects
all files into the publish folder
to be copied to other servers
and containers.

(1) dotnet new

static void Main(string[] args)
{
 Console.WriteLine("Hello World!");
}

.NET CLI package
NuGet

Initial .NET CLI package
assemblies enable the
command-line interface.

Dependency packages
determined by SDK are
downloaded from NuGet.

Figure 2.3 How files used by .NET Core applications are published

25Deploying to a server
2.6.2 Deploying to a Docker container

Deploying to a Linux, macOS, or Windows machine is all the same—copy the con-
tents of the publish folder to a folder on the target machine. If you’re not deploying a
self-contained application, the only prerequisite for the target machine is having the
.NET Core SDK installed. For Docker, the same general theory applies, but you’ll typi-
cally want to create a container with your application.

 Earlier, you used Microsoft’s .NET Core container by executing the following com-
mand from the Docker CLI:

docker run -it microsoft/dotnet:latest

You get the latest .NET Core container from Docker Hub by using microsoft/
dotnet:latest.

 To create a new Docker container with the application, you’ll start with the .NET
Core container, copy your published application’s files, and tell it to run the
application.

 First, open a command prompt with the Docker CLI. Change to the folder con-
taining the Hello World console application, and then create a new text file in the cur-
rent folder called Dockerfile. Insert the text from the following listing.

FROM microsoft/dotnet:latest
COPY bin/Release/netcoreapp2.0/publish/ /root/
ENTRYPOINT dotnet /root/hwapp.dll

Save and close the Dockerfile file. Then execute the following Docker CLI command
to build the container.

docker build -t hwapp .

Now you can run the container with the following command and see that your appli-
cation is working.

$ docker run -it hwapp
Hello World

DEPLOYING THE WEB APPLICATION

The barebones ASP.NET Core web application you created earlier (hwwebapp) will
need some adjustments before it can work on Docker. First, modify the Program.cs file
as shown in the following listing.

Listing 2.7 Dockerfile for Hello World console application

Listing 2.8 Command to build Hello World console application container image

Listing 2.9 Running the Hello World console application Docker container

26 CHAPTER 2 Building your first .NET Core applications

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace hwwebapp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseUrls("http://*:5000/")
 .UseStartup<Startup>()
 .Build();
 }
}

The added line allows URLs other than http://localhost:5000. Because the applica-
tion is being deployed to a container, you’ll need to test it by pinging it from outside
the container.

 You also need to configure Docker to open the port. To do this, you’ll first need to
edit the Dockerfile, as shown in the following listing

FROM microsoft/dotnet:latest
COPY bin/Release/netcoreapp2.0/publish/ /root/
EXPOSE 5000/tcp
ENTRYPOINT dotnet /root/hwwebapp.dll

Build and run the application and Docker container with the following commands:

dotnet publish -c Release
docker build -t hwwebapp .
docker run -it -p 5000:5000 hwwebapp

To test the web application, use localhost with port 5000 in your browser: http://local-
host:5000.

2.6.3 Packaging for distribution

.NET Core makes it easy to package your library or application so that others can use
it in their applications. This is accomplished through the dotnet pack command.

Listing 2.10 Modifying Program.cs for Docker container deployment

Listing 2.11 Modifying Dockerfile for Docker container deployment

Add this
line.

Opens
port 5000

27Development tools available for .NET Core
 Try this out on the Hello World console application. Go to the hwapp folder and
run dotnet pack -c Release. This command will create a hwapp.1.0.0.nupkg file.

 The .nupkg file produced by the dotnet pack command is a NuGet package. A
lot of the dependencies you use in your .NET Core applications will come from NuGet
packages. They’re a great way of sharing code both privately and publicly. We’ll cover
these in more depth in chapter 12.

2.7 Development tools available for .NET Core
Microsoft typically released new versions of the .NET Framework in tandem with
updates to Visual Studio. This meant that the files involved in .NET projects didn’t
need to be human-readable, because the IDE would take care of that work. When
Microsoft started building .NET Core, they needed simple files that developers could
edit directly with text editors. They relied on JSON and created a custom build system.

 In the long term, maintaining two different build systems would be costly and con-
fusing, so even though developers loved the new JSON-based .NET Core build system,
the Microsoft team needed to incorporate it back into their existing build system,
called MSBuild. The chief complaint against MSBuild was about the complexity of the
project files. Luckily, MSBuild is flexible enough that the .NET Core team could
address this concern.

 The .NET Core project files use a lot of techniques to reduce the file size and com-
plexity so that developers can more easily edit them by hand. This means you can use
any text editor you want for writing your .NET Core applications, instead of needing
to use Visual Studio. The range of development tools includes everything from full-
featured IDEs to vi, notepad, or butterflies (see https://xkcd.com/378). For this
book, you’ll only need a basic text editor and a command prompt. But you can also try
out some of these editors to improve your experience.

2.7.1 OmniSharp

OmniSharp is a family of open source projects whose goal is to enable building .NET
in the most popular text editors. It does this with tools, editor integrations, and librar-
ies. OmniSharp provides plugins for all kinds of text editors:

 Atom (atom.io)
 Sublime (sublimetext.com)
 Brackets (brackets.io)
 Emacs (gnu.org/software/emacs)
 Vim (vim.org)
 Visual Studio Code (code.visualstudio.com)

As an example, install the OmniSharp extension for Visual Studio Code.

https://xkcd.com/378

28 CHAPTER 2 Building your first .NET Core applications
OMNISHARP FOR VISUAL STUDIO CODE

Visit https://code.visualstudio.com from your browser and download Visual Studio
Code. After installing it, you can run the command code . from a new terminal or
command line window to open Visual Studio Code on the current folder.

 Mac users need to take an extra step: open the Command Palette from the View
menu, and type in “shell command” to find “Install 'code' command in PATH”.

 When you open a C# file with VS Code for the first time, it will prompt you to
install an extension. The one entitled “C#” is the OmniSharp extension. This exten-
sion should be all you need to build, run, and debug .NET Core applications—assum-
ing you’ve already installed the .NET SDK.

 Also note that VS Code has an integrated terminal that can be configured to Win-
dows Command Prompt, PowerShell, or Bash. You can also have multiple terminals
open at the same time. This makes it easier to try out the various .NET CLI commands
used throughout this book.

2.7.2 Visual Studio for Mac

Developers who may have worked with Xamarin Studio in the past will recognize
Visual Studio for Mac as being Xamarin Studio rebranded. VS for Mac has several edi-
tions, including a free community edition.

BUILDING XAMARIN APPS ON WINDOWS If you want the Xamarin Studio experi-
ence but aren’t on Mac, Xamarin is an option you can choose from the Visual
Studio 2017 installer.

Creating new projects in Visual Studio for Mac is done through the New Project wiz-
ard (shown in figure 2.4). You can use this instead of the dotnet command-line
options. Also note that VS for Mac will perform restores for you.

2.7.3 Visual Studio 2017

Visual Studio has always been the flagship development environment for Microsoft. It
only runs on Windows and has been synonymous with Windows and the .NET Frame-
work for many years. Only in recent releases has Visual Studio started to support other
languages, such as Python and JavaScript. You can use the preview .NET Core tooling
in Visual Studio 2015, but it doesn’t come with support. Visual Studio 2017 has a free
Community Edition that includes .NET Core and Xamarin tooling. You can find it at
www.visualstudio.com/downloads.

 With Visual Studio, you don’t need to use the dotnet command-line commands.
For example, the New Project wizard shown in figure 2.5 replaces the dotnet new
functionality.

https://code.visualstudio.com
www.visualstudio.com/downloads

29Development tools available for .NET Core

Figure 2.5 Visual Studio 2017 Community edition New Project wizard

Xamarin applications

.NET Core and .NET
Standard project types

Templates for creating
new projects

Figure 2.4 Visual Studio for Mac’s New Project wizard

.NET Core and .NET
Standard project types

Don’t pay attention to this. It
doesn’t have any bearing on your
.NET Core/Standard projects.

Xamarin applications
All the same templates are
available here as in “dotnet new”.

30 CHAPTER 2 Building your first .NET Core applications
Right-click on the project in the Solution Explorer to find some of the other com-
monly used .NET CLI commands. Figure 2.6 shows what’s available.

 Note that dotnet restore isn’t mentioned anywhere. That’s because Visual Stu-
dio will automatically detect when a restore is needed. There’s no explicit Run com-
mand, but you can use the traditional F5 or Ctrl-F5, as with any other Visual Studio
project.

Additional resources
I introduced a lot of concepts in this chapter. Here are some helpful links where you
can find out more information about the subjects and products we touched on:

 The central .NET site—https://dot.net
 Install instructions for .NET Core—www.microsoft.com/net/core
 Docker—www.docker.com
 Docker in Action by Jeff Nickoloff—http://mng.bz/JZSJ
 Docker in Practice, Second Edition, by Ian Miell and Aidan Hobson Sayers—http://

mng.bz/H42I
 ASP.NET Core in Action by Andrew Lock—http://mng.bz/DI1O
 Node.js—https://nodejs.org
 Node.js in Action, Second Edition, by Alex Young, Bradley Meck, and Mike Cante-

lon—http://mng.bz/mK7C
 Bower package manager—https://bower.io

These commands match what we’ve
explored already in this chapter.

Whenever this book asks
you to manipulate the project
file, use this command.

Figure 2.6 Right-click
menu for a .NET Core project
in Visual Studio 2017

http://mng.bz/mK7C
https://bower.io
http://mng.bz/H42I
http://mng.bz/H42I
http://mng.bz/JZSJ
www.microsoft.com/net/core
https://dot.net
www.docker.com
http://mng.bz/DI1O
https://nodejs.org

31Summary
Summary
In this chapter you learned how to get started with .NET Core by doing the following:

 Installing the .NET Core SDK
 Learning basic .NET CLI commands
 Building both a console application and an ASP.NET Core web application
 Preparing applications for deployment and distribution

These are all fundamental skills for developing with .NET Core. Here are a few tips to
keep in mind:

 The dotnet new command makes it easy to get a template for starting a new
project. It’s also nice if you need a quick reference.

 Whenever you make changes to the dependencies, you can run the dotnet
restore command to get the packages immediately.

 Use the Yeoman generator for more customizable templates.

You’ll practice more with the .NET CLI commands (restore, new, run, publish, and
pack) throughout the book. In the next chapter, we’ll get into the details of the project
files and you’ll learn how to build more substantial applications with .NET Core.

How to build with
.NET Core
32

Throughout my time as a software developer, there has been a dichotomy between the
things I want to do, like write code, and the things I have to do, like build code. I didn’t
want to learn makefiles or MSBuild. IDEs also made it possible to skip most of that.

 At least until the day when I had to do one specific thing. Then I had to either
go through the steep learning curve to figure out what I needed, or copy-paste
from Stack Overflow and hope for the best. Neither situation is ideal. Knowing the
fundamentals of your build files not only keeps you out of sticky situations, it also
lets you know what’s possible. For this chapter, I recommend that you not use an
IDE and instead code the exercises by hand.

3.1 Key concepts in .NET Core’s build system
Even experienced .NET Framework developers will find new terminology and con-
cepts in .NET Core. The way projects are built is essentially the same, but there are
several improvements.

This chapter covers
 Frameworks, runtimes, and platforms

 MSBuild fundamentals

33Key concepts in .NET Core’s build system
3.1.1 Introducing MSBuild

In the previous chapter, you created several projects, and the most critical component
for building them was the csproj file. A csproj is a C#-specific project file containing
MSBuild XML. For F# projects, the project file has an .fsproj extension; VB project
files have a .vbproj extension. It’s also possible to import other MSBuild files, but
those files don’t usually have the .*proj extensions.

3.1.2 Creating .NET projects from the command line

.NET Framework developers could always rely on Visual Studio to take care of a lot of
the build nastiness—most .NET Framework developers don’t write their own MSBuild
project files. This presented a challenge for the .NET Core team, because they
couldn’t rely on UI tools. What they produced was a much simpler way to build .NET
projects.

 In this chapter, I’ll show you how to use the .NET Core build system by example.
Build systems are critical to writing applications, and the .NET Core team has simpli-
fied building to the point that you can learn it up front and build better projects.

3.1.3 Clearing up the terminology

Many words used to describe software aren’t clearly defined, and they become inter-
changeable. For instance, what’s the difference between a framework, a platform, and
a runtime? Another confusing term is dependency. Figure 3.1 illustrates what a depen-
dency is using a class diagram. The individual items in figure 3.1 are explained further
in the following sections.

 When you add a dependency to a project file, that dependency can be a package,
metapackage, or another project. A package is generally a NuGet package containing
files and assemblies organized by the framework those assemblies will work on. Meta-
packages reference a bunch of other packages and may also define a framework. An
example of a metapackage that defines a framework is the .NET Standard Library. In
chapter 2, you used another metapackage called Microsoft.AspNetCore.All, which
doesn’t define a framework—it’s just a handy way of including all the ASP.NET Core
packages. Each package has a set of frameworks that it targets, and each of these tar-
get frameworks contains files, including any number of assemblies. Assemblies can
either be portable, like a .NET Standard assembly, or be runtime-specific.

What happened to project.json?
When .NET Core 1.0 was released, it used a build system based on a JSON file called
project.json. For .NET Core 2.0, project.json was dropped in favor of the established
MSBuild, which is used for .NET Framework projects.

34 CHAPTER 3 How to build with .NET Core
FRAMEWORKS

Frameworks, or more specifically target frameworks, are a NuGet concept. A target frame-
work is a flavor and/or version of .NET, such as .NET Framework 4.5 or .NET Core
1.0. A framework is typically specified using its target framework moniker (TFM). For
instance, .NET Framework 4.5 is net45 and .NET Core 1.0 is netcoreapp1.0.

 When working with the project file or the .NET CLI, you use TFMs. In the project
file, the TargetFramework property is where you specify the target framework your
project supports. The following listing shows an example project file for a class library
project.

<<Dependency>>

Metapackage

Package

1..*

Project

Think of package,
metapackage, and
project as inheriting
from dependency.

A metapackage is an
aggregate of one or
more packages.

Packages are composed
of one or more target
framework folders.

A metapackage may
be associated with
a framework.

A runtime-specific
assembly works on a
particular class of OS.

1..*

*

0..1

Each target framework folder
in a package contains any
number of assemblies.

Portable assemblies
work on any runtime.

Framework

Target framework

<<Assembly>>

Runtime-specific assembly Portable assembly

Figure 3.1 Dependencies illustrated with UML

35Key concepts in .NET Core’s build system

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.4</TargetFramework>
 </PropertyGroup>

</Project>

From the CLI, you would use the -f or --framework option to pick the target frame-
work you want to build, or test, or publish as follows:

dotnet build -f netcoreapp2.0
dotnet test -f netcoreapp2.0

A list of TFMs is provided in appendix A, but you can also get the current list from the
online NuGet documentation.

.NET STANDARD

If your code works on multiple frameworks, it can be tedious to list all of those frame-
works in your project. Listing them can also mean that when a new framework comes
out that you want to support, you have to create a new version of your project. .NET
Standard alleviates some of this pain by allowing you to use one TFM that many frame-
works will support.

 Wherever possible, you’ll use the netstandard moniker with the lowest version
number that’s compatible with the sample code. This works for libraries, but console
applications and web services need to use netcoreapp, because that provides an
entry point for starting the application.

RUNTIMES

A runtime specification is composed of an operating system and CPU architecture, such
as win10-x64, osx.10.11-x64, and linuxmint.17.1-x86. There’s no satisfactory
explanation that I’ve found for why this is called a runtime. I speculate that runtime
once referred to OS, CLR type (CLR, CoreCLR, Mono), and CPU architecture. But
because the CLR type isn’t specific enough for generating NuGet packages, it was
removed in favor of the target framework.

 In figure 3.1, there are also runtime-specific assemblies. A runtime-specific assembly
would typically be a natively compiled assembly that only works on a particular class of
operating systems. There’s nothing in a package that lets it indicate that it only sup-
ports certain runtimes, but the .NET CLI will check runtime support during build.

 A list of runtime IDs is available in appendix A. The runtime IDs would be used
either in the project file in the RuntimeIdentifiers property or as a CLI parameter
with -r or --runtime.

PLATFORMS

Platform is the vaguest of all these terms. Whereas “framework” and “runtime” have tan-
gible meanings in .NET Core, “platform” doesn’t. Sometimes, platform is used in place

Listing 3.1 csproj showing the TargetFramework property

36 CHAPTER 3 How to build with .NET Core
of framework, and sometimes in place of runtime. You may have noticed that the .NET
Portability Analyzer tool refers to everything as a platform. The term “cross-platform”
is typically used to indicate something that works on multiple operating systems.

 In this book, I will try to only use platform to describe an operating system. Using
runtime to refer to operating systems can be confusing when you’re not talking about
the contents of a project file or about parameters to the .NET CLI.

3.2 CSV parser sample project
The example project you’ll build in this chapter is a CSV parser. It will be as basic an
implementation as possible—the code is terribly inefficient and has no error han-
dling. But it will help you see how projects are laid out, and you’ll learn some of the
options available.

 To get started, create a CsvParser project by executing the following commands
from a command line. Be sure to start in a folder that’s not within another project:

mkdir CsvParser
cd CsvParser
dotnet new console

Now create a new file called CsvReader.cs, and enter the following code.

using System.Collections.Generic;
using System.IO;

namespace CsvParser
{
 public class CsvReader
 {
 private string[] columns;
 private TextReader source;

 public CsvReader(TextReader reader)
 {
 this.source = reader;
 var columnLine = reader.ReadLine();
 this.columns = columnLine.Split(',');
 }

 public IEnumerable<KeyValuePair<string, string>[]> Lines
 {
 get
 {
 string row;
 while ((row = this.source.ReadLine()) != null)
 {
 var cells = row.Split(',');
 var pairs = new
 KeyValuePair<string, string>[columns.Length];

Listing 3.2 Contents of the CsvReader.cs file

The first line is assumed to
contain column headings.

Need to specify string
instead of var

Each row is expected
to have the same
number of columns.

37CSV parser sample project
 for (int col = 0; col < columns.Length; col++)
 {
 pairs[col] = new KeyValuePair<string, string>(
 columns[col], cells[col]);
 }

 yield return pairs;
 }
 }
 }
 }
}

Now that you’ve got a CSV reader class, you can experiment with it from your console
application. Edit the Program.cs file and add the following code.

using System;
using System.IO;
using System.Linq;

namespace CsvParser
{

For those not familiar with C#
I’ll explain some basic aspects of C# that will help those new to C# parse this and
other code in the book.

At the top of the code is usually a using statement. This indicates that you want to
include classes for a particular namespace without having to specify the full type
name. For instance, instead of writing System.IO.TextReader everywhere in the
code, you can add using System.IO and then only type TextReader in the code.
Note that using isn’t the same as a dependency. You can’t add a using statement
for a namespace that doesn’t exist in your project’s dependencies.

The Split(',') method in listing 3.1 is a way to split a string into an array of
strings using “,” as a delimiter.

TextReader is an abstract base class that defines the ReadLine method. It’s only
meant for reading text files and streams.

KeyValuePair is exactly what you think it is. The <> brackets used in the code indi-
cate generics. For example, KeyValuePair<string, string> is a pair where the
key and value are both of type string.

Sometimes I use var to declare a variable, and other times I use the explicit type,
like string. When a variable is declared and assigned to an obvious type, the C#
compiler will infer the type. If there’s some ambiguity or if the variable isn’t assigned
at the same time as it’s declared, you need to specify the type.

Listing 3.3 Program.cs for CsvParser

yield return returns
enumerable values
as they are read.

https://api.nuget.org/v3/index.json
file:///C:\Users\stallio\Documents\editing\git repos\metzgar\#CsvReaderCode
file:///C:\Users\stallio\Documents\editing\git repos\metzgar\#CsvReaderCode
http://nuget.org/
http://nuget.org/

38 CHAPTER 3 How to build with .NET Core
 public class Program
 {
 public static void Main(string[] args)
 {
 var csv = @"Year,Title,Production Studio
2008,Iron Man,Marvel Studios
2008,The Incredible Hulk,Marvel Studios
2008,Punisher: War Zone,Marvel Studios
2009,X-Men Origins: Wolverine,20th Century Fox
2010,Iron Man 2,Marvel Studios
2011,Thor,Marvel Studios
2011,X-Men: First Class,20th Century Fox
";

 var sr = new StringReader(csv);
 var csvReader = new CsvReader(sr);
 foreach (var line in csvReader.Lines)
 Console.WriteLine(
 line.First(p => p.Key == "Title").Value);
 }
 }
}

If everything is typed in correctly, you should be able to run the program, as shown
here:

> dotnet run

Iron Man
The Incredible Hulk
Punisher: War Zone
X-Men Origins: Wolverine
Iron Man 2
Thor
X-Men: First Class

For the preceding code, you didn’t need to modify the csproj file. That’s because you
didn’t take any dependencies outside of the netcoreapp framework, and there was

For those not familiar with C#
In listing 3.3, the @" indicates a verbatim string. It allows you to put newlines into the
string, and it ignores escape characters. It’s useful for keeping long strings like this
easy to read.

The StringReader class is a subclass of TextReader.

The expression line.First(p => p.Key == "Title").Value is built using
LINQ. LINQ is a powerful C# feature that can make complex logic more readable. This
expression looks for the first KeyValuePair with a key called Title and gets its
value. You’ll use LINQ expressions throughout the book. If you’re interested in learn-
ing more, I recommend reading Jon Skeet’s C# in Depth, Fourth Edition (Manning
2018).

Taken from Wikipedia’s “List of
films based on Marvel Comics”

A LINQ query to get
only the film titles

39Introducing MSBuild

Sets Pr
the va

Writes
and
to th
no need to change any of the defaults. But as your application or library becomes
more complex, you’ll need to know how to modify the project file. In this chapter,
you’ll learn how to customize the project file to fit your needs.

3.3 Introducing MSBuild
Before .NET Core, most developers didn’t need to look into the MSBuild project files.
Visual Studio took care of most of the work, so the project files tended to be verbose.
They could still be edited by hand, but they were far from intuitive.

 To make MSBuild work cross-platform and support the promise that developers
could use whatever tool they preferred, the project files for .NET Core needed to be
trimmed down. This meant using conventions and lots of defaults. In this chapter,
we’ll explore what some of these defaults and conventions are and how you can
extend beyond them.

MSBUILD FILES ARE CASE-SENSITIVE Just as in normal XML files, the elements
and attributes used in MSBuild files are case-sensitive. The convention is to
use camel case with a capitalized first letter.

3.3.1 PropertyGroups

A PropertyGroup node in an MSBuild file can contain any number of properties.
These are key-value pairs, and they’re evaluated in the order that they appear in the
file. This is important when thinking about properties. Properties must be defined in
the right order.

 To test this out, try modifying the CsvParser.csproj file (or create a new project and
modify its csproj) to look like the following.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 <Foo>First Foo</Foo>
 <Property1>$(Foo)</Property1>
 <Foo>Second Foo</Foo>
 <Property2>$(Foo)</Property2>
 </PropertyGroup>

 <Target Name="TestMessage" AfterTargets="Build" >
 <Message Text="$(Property1)" Importance="high"/>
 <Message Text="$(Property2)" Importance="high"/>
 </Target>

</Project>

EDITING THE PROJECT FILE FROM AN IDE How you edit the project file is differ-
ent depending on your development environment. If you’re using one of the

Listing 3.4 A test of how order of properties works in MSBuild

Defines Foo
the first timeoperty1 to

lue of Foo Overrides the
value of Foo

Sets Property2 to
the value of Foo

We’ll discuss Targets
in the next section.

 Property1
Property2
e console

High importance means
you don’t need to set
verbose build output.

40 CHAPTER 3 How to build with .NET Core
editors supported by OmniSharp, the csproj file is likely just another file
listed in the folder. In Visual Studio for Mac, control-click the project and
choose Tools > Edit File. In Visual Studio 2017, right-click on the project and
chose the option to edit the project file. Each editor will also have varying
capabilities in terms of IntelliSense.

From the command prompt, run dotnet build. You should see output like this:

 First Foo
 Second Foo

3.3.2 Targets

We’ve already seen two targets in the previous section. One is a built-in target called
Message that writes data to the MSBuild log. The other is a custom target that you
defined in the project file. The former comes from a .NET assembly. You won’t create
those kinds of MSBuild targets in this book. Instead, you’ll use the latter method of
defining targets in the project file.

 All targets must have a name. That’s how they’re referenced. Declaring a target in
an MSBuild file is similar to declaring a method in code. Unless something calls that
method, it’s never used.

 In the previous section, you used the AfterTargets attribute to tell MSBuild that
after it was done executing the Build target it should execute yours. You can also exe-
cute a target directly from the command line. Try changing the target defined in the
csproj file from the previous section to the following.

<Target Name="TestMessage">
 <Message Text="$(Property1)" Importance="high"/>
 <Message Text="$(Property2)" Importance="high"/>
</Target>

Executing dotnet build from the command line won’t print the messages as
before. But you can run dotnet build -t:TestMessage to instruct MSBuild to
execute the TestMessage target specifically. This is a handy technique for testing
things in MSBuild.

Undefined properties and debugging build files
For another interesting experiment, try removing the first Foo property setting and
build again. Only the Second Foo line will appear. The same thing happens if you
make the first Foo property setting an empty element. The Message task won’t print
empty output. As a result, it’s useful to add some text to the message other than just
the value of a property.

Listing 3.5 Target declaration with no AfterTargets attribute set

Remove AfterTargets
attribute

41Introducing MSBuild
3.3.3 ItemGroups

Build systems deal with lots of files. In MSBuild, the ItemGroup construct is a useful
tool for holding a set of filenames. It operates like an array and exposes operations for
manipulating that array. For instance, you can remove a single file or a set of files that
match a wildcard from a list.

 Try this out with your CsvParser by removing Program.cs from the list of files to
compile during the build, as shown in the next listing.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Compile Remove="Program.cs" />
 </ItemGroup>

</Project>

Removing Program.cs means there’s no longer a class with a static Main method.
When you run dotnet build, you should see an error message:

Build FAILED.

CSC : error CS5001: Program does not contain a static 'Main' method
 suitable for an entry point
 0 Warning(s)
 1 Error(s)

MSBuild will use the Compile ItemGroup as the list of files to send to the compiler.
This means that you can manipulate the ItemGroup to include files from other fold-
ers or to exclude files that are no longer used.

 The default definition of the Compile ItemGroup for C# projects is something
like the next listing.

<ItemGroup>
 <Compile Include="**/*.cs" />
</ItemGroup>

ITEMGROUPS CAN HAVE DUPLICATES Don’t put the Include from listing 3.7
into your project file, as it will add duplicate files to the Compile ItemGroup
and the build will fail.

Listing 3.6 Removing code file from compilation

Listing 3.7 Default definition for the Compile ItemGroup

Modifies the Compile ItemGroup
by removing Program.cs

42 CHAPTER 3 How to build with .NET Core
USING ITEMGROUP TO COPY FILES TO BUILD OUTPUT

Let’s find something more interesting to do with the ItemGroup than break the build.
The Program.cs file in your CSV parser example includes a test CSV string. You’re
going to split that test CSV into its own file.

 Start by creating a new file called Marvel.csv and pasting in the contents of the ver-
batim string from Program.cs, as follows.

Year,Title,Production Studio
2008,Iron Man,Marvel Studios
2008,The Incredible Hulk,Marvel Studios
2008,Punisher: War Zone,Marvel Studios
2009,X-Men Origins: Wolverine,20th Century Fox
2010,Iron Man 2,Marvel Studios
2011,Thor,Marvel Studios
2011,X-Men: First Class,20th Century Fox

Then modify Program.cs to load the file instead of using the string, as shown next.

public static void Main(string[] args)
{
 var reader = new StreamReader(new FileStream("Marvel.csv",
 FileMode.Open));
 var csvReader = new CsvReader(reader);
 foreach (var line in csvReader.Lines)
 Console.WriteLine(line.First(p => p.Key == "Title").Value);
}

This depends on the Marvel.csv file being in the same folder as the binary for your
application.

 You can copy the file from your project folder by using a common MSBuild project
item. Modify the csproj as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <None Include="Marvel.csv">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 </ItemGroup>

</Project>

Listing 3.8 Marvel.csv—contents taken from string in Program.cs

Listing 3.9 Program.cs modified to load Marvel.csv

Listing 3.10 Modifying a csproj to copy a file to the build output

CsvReader accepts
any TextReader.

None indicates no action
on this file by the compiler.

CopyToOutputDirectory is
a common project item.

43Introducing MSBuild
Run dotnet build and look at the bin/Debug/netcoreapp2.0 folder. It will have a
copy of Marvel.csv in it. When you run dotnet run, CsvParser will find the CSV file in
the same folder and execute correctly.

EMBEDDING FILES IN THE PROJECT

.NET projects have a concept of embedding files into the assembly. This is useful if
you don’t want to copy a separate file with your assembly. In our example, it isn’t obvi-
ous that the Marvel.csv file needs to be copied along with CsvParser.dll in order for
the application to work. Let’s see how to use embedding to put Marvel.csv inside the
assembly.

 First, change the csproj to embed the CSV instead of copying it to output, as shown
in the next listing.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <EmbeddedResource Include="Marvel.csv" />
 </ItemGroup>

</Project>

Next, modify Program.cs to pick up the embedded file, as shown in the following listing.

using System;
using System.IO;
using System.Linq;
using System.Reflection;

namespace CsvParser
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var stream = typeof(Program).GetTypeInfo().Assembly.
 GetManifestResourceStream(
 "CsvParser.Marvel.csv");
 var reader = new StreamReader(stream);
 var csvReader = new CsvReader(reader);
 foreach (var line in csvReader.Lines)
 Console.WriteLine(line.First(p => p.Key == "Title").Value);
 }
 }
}

Listing 3.11 Embedding a file in an assembly

Listing 3.12 Modifying Program.cs to read the embedded file

Adds a reference to
System.Reflection to
expose GetTypeInfo()

This statement gets the
stream from the assembly.

44 CHAPTER 3 How to build with .NET Core
FOR THOSE NOT FAMILIAR WITH C# GetTypeInfo is something called an exten-
sion method in C#, meaning that it isn’t part of the original type. In this case,
the typeof() operator returns the Type object that represents the Program
class. Type doesn’t have a method called GetTypeInfo. But once you’ve
included the System.Reflection namespace, you get the GetTypeInfo
extension method for Type.

FOR .NET FRAMEWORK DEVELOPERS The Type class doesn’t have a property
called Assembly in .NET Core. This is to optimize for native compilation. A
lot of the reflection capabilities have been moved to a new class called Type-
Info.

Assuming you cleaned up the files from the previous build, Marvel.csv should not
show up in the build output. The file is now inside the CsvParser assembly.

3.4 Dependencies
There are three types of dependencies in .NET Core: target frameworks, packages,
and projects. You can see a simple example of this in the following listing.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <ProjectReference Include="..\foo\foo.csproj" />
 <PackageReference Include="xunit"
 Version="2.1.0" />
 </ItemGroup>
</Project>

The TargetFramework is the moniker of the .NET framework you want to build the
assembly with. You’ll only use the netcoreapp and netstandard target framework
monikers (TFMs) in this book. A list of the TFMs available when building from the
.NET CLI is included in appendix A.

 A ProjectReference is a reference to another code project. MSBuild will deter-
mine the correct order in which to build the projects. It will also print error messages
if there are circular dependencies.

 PackageReferences are for NuGet packages, which can come from public or
private feeds, depending on your configuration. A version number is also specified.
During restore, the .NET CLI will check to see what other references there are to the
same package, and determine which version will work for all of them. This means
that although I specified xUnit version 2.1.0, I may not get 2.1.0 specifically. If incom-
patibilities are detected, the restore command will write warnings or errors to the

Listing 3.13 Three types of dependencies shown in a project file

Only one target
framework

Refers to another
project

Refers to
a NuGet
package

dotnet restore tries to
find a common version
among all projects.

It’s unnecessary for two
item groups to be in
separate ItemGroup nodes.

45Targeting multiple frameworks
console. The ability to force a package version, like in .NET Core version 1.1 and ear-
lier, went away in .NET Core 2.0.

METAPACKAGES Some packages have no assemblies in them; instead, they
reference a set of dependencies. These packages are called metapackages.
Microsoft.AspNetCore.All is an example. These are convenient for grouping
a set of packages that are typically referenced together.

When referencing a package, that package is downloaded from an external source.
This keeps the .NET Core SDK small while making it easy to reference non-Microsoft
packages. The package manager used by the .NET Core SDK is called NuGet. As its
website says, “NuGet is the package manager for .NET” (http://nuget.org).

3.5 Targeting multiple frameworks
In the previous section, you saw that TargetFramework is an MSBuild property and
isn’t defined as an ItemGroup. But what if you want to build a version of the code for
.NET Core and another version for the .NET Framework? Perhaps you have an exist-
ing .NET Framework application and you want to change one of the projects to .NET
Core without having two copies of the code. There’s a powerful MSBuild construct
that can help you do this, called conditions.

How to set custom NuGet feeds
A feed is an HTTP REST API endpoint for the package store. The default feed URL for
NuGet is https://api.nuget.org/v3/index.json. This feed is available automatically
without configuration.

But there are cases where you may want to use different feeds. For example, you may
want to use a nightly build of ASP.NET Core. You could also create your own feed for
your company to share packages internally. To use other feeds, you need to create a
NuGet.config file. This file can go in the folder of your project or in any of its parent
folders.

Here’s a sample NuGet.config file:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <packageSources>
 <clear />
 <add key="AspNetCI"
 value="https://www.myget.org/F/aspnetvnext/api/v3/index.json"/>
 <add key="NuGet.org"
 value="https://api.nuget.org/v3/index.json" />
 </packageSources>
</configuration>

NuGet feeds are covered in more detail in chapter 12.

https://api.nuget.org/v3/index.json
http://nuget.org

46 CHAPTER 3 How to build with .NET Core
 Let’s assume that you want the CsvParser to be built for the .NET Framework as
well as for .NET Core. Consider the changes shown in the following listing.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <PropertyGroup Condition="'$(IsFx)' == 'true'">
 <TargetFramework>net461</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <EmbeddedResource Include="Marvel.csv" />
 </ItemGroup>

</Project>

In listing 3.15, you use a Condition parameter to tell MSBuild to only evaluate the
PropertyGroup if the condition is true. Condition can be applied to almost any ele-
ment in an MSBuild project file. As you learned earlier, the properties are evaluated
in the order of their appearance in the file, so if the IsFx property is set to true, it
will override the value of the TargetFramework property.

 If you’re running on Windows, you can test this condition by specifying the prop-
erty on the command line. This has to be done for both the restore and build steps.
The following listing shows the commands to do this.

dotnet restore -p:IsFx=true
dotnet build -p:IsFx=true

MULTIPLE BUILD PROPERTIES You can specify multiple properties on the com-
mand line by comma-separating or using multiple -p parameters.

Additional resources
To learn more about what we covered in this chapter, try the following resources:

 NuGet—http://nuget.org
 MSBuild Concepts—http://mng.bz/0Se7

Summary
In this chapter you explored the basics of MSBuild and learned how to use it to build
.NET Core projects. These key concepts were covered:

 The fundamental constructs in MSBuild
 How to modify the project file to perform some common build operations

Listing 3.14 CsvParser.csproj with multiple target frameworks

Listing 3.15 .NET CLI commands to specify a build property that affects dependencies

Default to
.NET Core

IsFx is a custom
property defined outside
this project file.

.NET 4.6.1 must be
installed on the machine.

http://nuget.org
http://mng.bz/0Se7

47Summary
Here are some important techniques to remember from this chapter:

 Use the Message target with high importance to write debug messages from
MSBuild.

 Targets and property values can be specified on the command line.
 Conditions in MSBuild are a powerful tool for customizing builds.
 Embedding a file in an assembly is useful when a user may forget to copy the

file, and its contents don’t need to be changed.

Integrated development environments (IDEs) tend to hide from developers how the
underlying build mechanisms work. Most of us .NET Framework developers used
Visual Studio and didn’t spend much time with MSBuild. .NET Core is a bit different
in that it targets the command-line experience foremost, and tooling is considered
supplemental. One benefit is that MSBuild files are much easier to read and manipu-
late than before.

 MSBuild is a special-purpose language. It helps to spend a little time getting famil-
iar with it before diving into .NET project development. I consider it to be one of the
fundamental building blocks for working with .NET. In the next chapter, we’ll explore
another of these building blocks: unit testing.

Unit testing with xUnit
Testing is an essential part of writing great libraries and applications, and the first
line of defense for testing is the unit test. In this chapter you’ll learn how to write
unit tests in .NET Core, execute the tests, and add and collect logging data.

4.1 Why write unit tests?
Unit tests are written against the smallest units in a software library, such as classes.
A class should have responsibility over a single piece of functionality, and that
responsibility should be entirely encapsulated by the class. This is the single responsi-
bility principle, and it’s one of the SOLID software design principles.

SOLID SOFTWARE DESIGN The SOLID design principles are part of the core
principles of the agile software development methodology. They’re also

This chapter covers
 Executing unit tests with the .NET CLI

 Writing unit tests with xUnit

 The difference between facts and theories

 Logging test output
48

49Business-day calculator example
just good practice. I recommend reading Clean Code: A Handbook of Agile Soft-
ware Craftsmanship by Robert C. Martin (Prentice Hall, 2008) to learn more.

When developing a software application, it’s common to want to build all the pieces and
test the software’s functionality as a whole. The problem with this approach is that it’s
too easy to miss corner cases or unanticipated scenarios. Unit testing gets the developer
to think about each unit individually and to verify those units independently.

 Unit tests also help build confidence in an application’s functionality. When the
unit tests achieve a high percentage of code coverage, you know that most of the code
has been exercised (although you should avoid relying too much on this metric). The
tests also enforce a contract for each unit, so any changes to the source code must
either comply with the existing contract or explicitly change the contract.

REFACTORING Modifying the code without changing its external behavior is
called refactoring. Unit tests are an essential part of the refactoring process.

I believe that unit testing is an essential tool for building software. You’ll use unit test-
ing throughout this book, so it’s important to introduce it early. The .NET CLI seam-
lessly integrates with unit-testing frameworks and makes them a primary function.
Unit testing is easier to learn if you start with some sample code first and build unit
tests for that code.

4.2 Business-day calculator example
I once worked on a manufacturer/supplier collaboration application. The premise
was simple: the manufacturer wanted to communicate with all of its suppliers to make
sure it had supplies at the right time and in the right quantities so as not to interrupt
the assembly line. In this case, it was imperative that the right dates were calculated.
Most suppliers gave estimates in the form of a number of business days, so I was tasked
with coming up with a way to display the estimated date of a shipment’s delivery based
on when the order was placed.

 To my inexperienced ears, the problem sounded simple. But this was back before I
knew what unit testing was for. The component I wrote didn’t correctly calculate dates
where suppliers had different holiday schedules than the manufacturer, and I missed
this bug because I didn’t have unit tests. Luckily, the manufacturer, our customer,
noticed the issue before it caused an assembly-line mishap.

 In this chapter, you’ll write a business-day calculator and the accompanying unit
tests. The concept may seem trivial, but calculating the date incorrectly can cost your
customer or employer money and can cost you a contract. You’ll make the library
able to calculate a target date based on a start date and the number of business days.
You’ll focus on US holidays for now, but you’ll leave the library open to work with
other nations.

50 CHAPTER 4 Unit testing with xUnit
 You’ll create two projects in a folder called BusinessDays. The folder structure and
project files should look like this:

 BusinessDays
– BizDayCalc

– BizDayCalc.csproj
– BizDayCalcTests

– BizDayCalcTests.csproj

First, create the three folders. At the command prompt, go to the BizDayCalc folder
and execute dotnet new classlib. You haven’t used this template before—it’s for
creating class libraries. Class libraries don’t have an entry point and can’t run on their
own, but they can be referenced by other projects.

 Rename the Class1.cs file to Calculator.cs, and insert the following code.

using System;
using System.Collections.Generic;

namespace BizDayCalc
{
 public class Calculator
 {
 private List<IRule> rules = new List<IRule>();

 public void AddRule(IRule rule)
 {
 rules.Add(rule);
 }

 public bool IsBusinessDay(DateTime date)
 {
 foreach (var rule in rules)
 if (!rule.CheckIsBusinessDay(date))
 return false;

 return true;
 }
 }
}

The Calculator class allows you to add a set of rules, and then it tests those rules
against a given date. If any rule returns false, it’s not a business day.

 Each rule is singularly responsible for its logic. If you attempt to put all the logic
together into one long string of if statements, you’ll end up with complex code that’s
hard to maintain. Dividing the logic into rules also gives applications using the Biz-
DayCalc library the ability to customize. For instance, you could have a rule for Presi-
dent’s Day, which some companies may observe as a holiday and others may not. The
application offers the user the freedom to choose.

Listing 4.1 Contents of Calculator.cs

Needed for
DateTimeNeeded for

List<>

If a rule reports false,
it’s not a business day.

51xUnit—a .NET Core unit-testing framework
 A rule implements the IRule interface. IRule only has one method: Check-
IsBusinessDay. The goal is to make implementing a rule as simple as possible. The
Calculator class can determine how many business days fall within a given date
range or work out an estimated date based on the number of business days, using only
the CheckIsBusinessDay method.

 You’re going to add the code for the IRule interface. Create a new file called
IRule.cs and insert the following code.

using System;

namespace BizDayCalc
{
 public interface IRule
 {
 bool CheckIsBusinessDay(DateTime date);
 }
}

So far you haven’t defined any actual business logic. For many companies, weekends
aren’t considered business days, so define a rule that checks the day of the week. Cre-
ate a new file called WeekendRule.cs and add the following code.

using System;

namespace BizDayCalc
{
 public class WeekendRule : IRule
 {
 public bool CheckIsBusinessDay(DateTime date)
 {
 return
 date.DayOfWeek != DayOfWeek.Saturday &&
 date.DayOfWeek != DayOfWeek.Sunday;
 }
 }
}

You’ll build more of this library throughout this chapter. You have enough now to
start creating unit tests.

4.3 xUnit—a .NET Core unit-testing framework
xUnit is a unit-testing framework. Each unit-testing framework is different, but they
can all interface with the .NET CLI to execute tests.

 The .NET CLI command to run tests is dotnet test, and you’ll be using it through-
out this chapter. Other unit-testing frameworks will also work with dotnet test, but
each framework has different ways of writing unit tests. xUnit worked with .NET Core

Listing 4.2 Contents of IRule.cs

Listing 4.3 Contents of WeekendRule.cs

52 CHAPTER 4 Unit testing with xUnit
very early on, so it’s a favorite of early adopters. Plus, there’s a xUnit template for
dotnet new built into the CLI.

 xUnit takes advantage of features available in .NET that older .NET unit-testing
frameworks don’t. This makes for a more powerful testing framework that’s easier to
code, and it incorporates recent advances in unit testing.

XUNIT PHILOSOPHY xUnit.net on GitHub has a great explanation of why xUnit
was built in an article titled “Why did we build xUnit 1.0?” (http://mng.bz/
XrLK).

4.4 Setting up the xUnit test project
Go to the parent folder, BusinessDays, and create a new subfolder called BizDayCalcT-
ests. Inside the subfolder, run dotnet new xunit. Modify the BizDayCalcTests.csproj
file as shown in the following listing.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 <IsPackable>false</IsPackable>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk"
 Version="15.3.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio"
 Version="2.2.0" />
 <ProjectReference
 Include="../BizDayCalc/BizDayCalc.csproj" />
 </ItemGroup>

</Project>

You’ll learn how to use the xUnit CLI runner in the next section.

4.5 Evaluating truth with xUnit facts
The first test you’ll write is for the WeekendRule.cs file. Rename the UnitTest1.cs file
to WeekendRuleTest.cs, and modify the code to look like the following.

using System;
using BizDayCalc;
using Xunit;

namespace BizDayCalcTests
{

Listing 4.4 Modifying BizDayCalcTests.csproj to reference the BizDayCalc project

Listing 4.5 WeekendRuleTest.cs using Fact

xUnit test runner, so you
can use dotnet test

References the
BizDayCalc class library

http://mng.bz/XrLK
http://mng.bz/XrLK

53Evaluating truth with xUnit facts
 public class WeekendRuleTest
 {
 [Fact]
 public void TestCheckIsBusinessDay()
 {
 var rule = new WeekendRule();
 Assert.True(rule.CheckIsBusinessDay(new DateTime(2016, 6, 27)));
 Assert.False(rule.CheckIsBusinessDay(new DateTime(2016, 6, 26)));
 }
 }
}

Execute dotnet test to run the test. You should see output similar to the following.

Starting test execution, please wait...
[xUnit.net 00:00:00.7711235] Discovering: BizDayCalcTests
[xUnit.net 00:00:00.9131241] Discovered: BizDayCalcTests
[xUnit.net 00:00:00.9663611] Starting: BizDayCalcTests
[xUnit.net 00:00:01.1293488] Finished: BizDayCalcTests

Total tests: 1. Passed: 1. Failed: 0. Skipped: 0.
Test Run Successful.

Now that you’ve successfully run a unit test, let’s explore this test a bit. The first thing
to notice is [Fact]. It indicates that the test is always true. Also note that the Assert
class, which is a common pattern in unit-testing frameworks, has methods like True
and False instead of IsTrue and IsFalse. xUnit generally leaves out verbs in the
method names.

For those not familiar with C#
[Fact] is an attribute, and it indicates that the method is a unit test. Attributes can
be applied on classes, members of classes, or even whole assemblies, and they pro-
vide information about an item. The full type name of [Fact] is Xunit.Fact-
Attribute, and it’s part of the xUnit library. By convention, C# will assume the
Attribute suffix.

How does dotnet test work?
There’s no built-in support for xUnit in .NET Core. Yet the dotnet test command
is so simple, it feels like xUnit is integrated somehow.

The magic is down to the xunit.runner.visualstudio package. If you were to
peek at the code in the package, you’d find assemblies with entry points. The dot-
net test command is essentially running another application and passing it param-
eters. This makes it easy for testing frameworks to work with .NET Core.

Also note that the .NET Core test runner operates in both a console mode and a
design-time mode. The design-time mode is used by IDEs such as Visual Studio. In
the IDE, the test runner operates slightly differently.

Fact is a type
of xUnit test.

54 CHAPTER 4 Unit testing with xUnit
 It’s also important to note what isn’t in this code. There’s no attribute on the
WeekendRuleTest class that indicates it’s a test class. xUnit avoids the use of such
devices to make the code cleaner. The presence of test methods is enough to tell
xUnit that it’s a test class.

4.6 Running tests from development environments
Most development environments integrate testing into the editor. For example,
OmniSharp adds links to each method in Visual Studio Code (see figure 4.1).

 Although VS Code allows you to run an
individual unit test, it doesn’t have a way to
run all the tests in an integrated fashion. You
can run all the tests by running the dotnet
test command from the integrated termi-
nal. In that case, the output from the tests
goes to the Output pane in the editor.

RUNNING TESTS FROM VS CODE See chap-
ter 8 for information on how to use VS
Code tasks to run tests.

Visual Studio for Mac runs tests through the Run menu. If you try to start a test project
with or without debugging, VS for Mac will recognize that it’s a test project and collect
the results from the tests in the Tests pane.

 Visual Studio 2017 has more complete integration with .NET Core testing. Figure
4.2 shows a typical testing process.

Figure 4.2 Visual Studio 2017 test integration

Run the
individual
unit test.

Debug the
unit test.

Figure 4.1 OmniSharp extension for Visual
Studio Code can run unit tests

Run all tests
from the
Test menu.

The Test Explorer
will show all the
tests in your
system and if
they’ve been run,
passed, or failed.

The result of the unit test is visible
through the green checkmark or
red “X” shown above the method.

Double-clicking on an individual
test method takes you directly
to that test in the code.

55When it’s impossible to prove all cases, use a theory
4.7 When it’s impossible to prove all cases, use a theory
The test you wrote for WeekendRule is actually not a good example of a “fact.” There
are many different inputs that you can use when testing this class, and it’s not possible
to test them all. That’s why xUnit has theories. A theory is a test that’s true only for a
particular set of data.

 Add a few theories, as shown in the next listing.

using System;
using BizDayCalc;
using Xunit;

namespace BizDayCalcTests
{
 public class WeekendRuleTest
 {
 [Fact]
 public void TestCheckIsBusinessDay()
 {
 var rule = new WeekendRule();
 Assert.True(rule.CheckIsBusinessDay(new DateTime(2016, 6, 27)));
 Assert.False(rule.CheckIsBusinessDay(new DateTime(2016, 6, 26)));
 }

 [Theory]
 [InlineData("2016-06-27")] // Monday
 [InlineData("2016-03-01")] // Tuesday
 [InlineData("2017-09-20")] // Wednesday
 [InlineData("2017-09-17")] // Sunday
 {
 var rule = new WeekendRule();
 Assert.True(rule.CheckIsBusinessDay(DateTime.Parse(date)));
 }

 [Theory]
 [InlineData("2016-06-26")] // Sunday
 [InlineData("2016-11-12")] // Saturday
 public void IsNotBusinessDay(string date)
 {
 var rule = new WeekendRule();
 Assert.False(rule.CheckIsBusinessDay(DateTime.Parse(date)));
 }
 }
}

Run dotnet test to execute the tests. Notice that you now have six tests—each
[InlineData] for your theory is an individual test. You can only test a small subset of
possible dates, so these tests fit better as theories than as facts. Also note that one of
these tests fails with an error, as you can see here:

Failed BizDayCalcTests.WeekendRuleTest.IsBusinessDay(date: "2017-09-17")
Error Message:

Listing 4.6 WeekendRuleTest.cs using Theory

Marks as a theory

The data to pass to
the test method

This test method
takes a parameter.

56 CHAPTER 4 Unit testing with xUnit
 Assert.True() Failure
Expected: True
Actual: False
Stack Trace:
 at BizDayCalcTests.WeekendRuleTest.IsBusinessDay(String date) in
 /chapter4/BusinessDays/BizDayCalcTests/WeekendRuleTest.cs:line 25

Notice that the failure message includes the parameters to the test method. This is
very helpful for determining which inputs break the theory. In this case, you can
remove the InlineData for “2017-09-17”.

 InlineData also allows you to specify multiple parameters, which can shorten the
test code. The following listing shows an example of InlineData with multiple
parameters.

public class WeekendRuleTest
{
 [Theory]
 [InlineData(true, "2016-06-27")]
 [InlineData(true, "2016-03-01")]
 [InlineData(false, "2016-06-26")]
 [InlineData(false, "2016-11-12")]
 public void IsBusinessDay(bool expected, string date)
 {
 var rule = new WeekendRule();
 Assert.Equal(expected, rule.CheckIsBusinessDay(DateTime.Parse(date)));
 }
}

In the preceding code, you have only four tests specified, but already the attributes
take up a lot of space. If you were to include InlineData to test every weekend in a
given year, you’d end up with a large stack of attributes. In these cases, where you
need many test cases for your theories, or if you want the test cases to generate data
that isn’t easily specified statically in an attribute, use MemberData. The following list-
ing shows an example of MemberData.

using System;
using System.Collections.Generic;
using BizDayCalc;
using Xunit;

namespace BizDayCalcTests
{
 public class WeekendRuleTest
 {
 public static IEnumerable<object[]> Days {
 get {

Listing 4.7 WeekendRuleTest.cs using InlineData with multiple parameters

Listing 4.8 WeekendRuleTests.cs using [MemberData]

Add for
IEnumerable<>

MemberData only works with static
IEnumerable<object[]> members.

57Shared context between tests
 yield return new object[] {true, new DateTime(2016, 6, 27)};
 yield return new object[] {true, new DateTime(2016, 3, 1)};
 yield return new object[] {false, new DateTime(2016, 6, 26)};
 yield return new object[] {false, new DateTime(2016, 11, 12)};
 }
 }

 [Theory]
 [MemberData(nameof(Days))]
 public void TestCheckIsBusinessDay(bool expected, DateTime date)
 {
 var rule = new WeekendRule();
 Assert.Equal(expected, rule.CheckIsBusinessDay(date));
 }
 }
}

In the previous code listings, you had to pass a string in [InlineData] because a new
DateTime isn’t a constant expression and therefore can’t be used as an argument to
an attribute. With [MemberData] you can use a static property instead and create the
DateTime objects inside. [MemberData] can only be used on static properties.

4.8 Shared context between tests
xUnit creates a new object of your test class for every test method it executes. That
includes each invocation of a theory. This allows tests to be executed in any order and
in parallel. xUnit will execute tests in random order.

 Sometimes you have some setup or cleanup code that’s common to a set of tests.
This is called shared context. xUnit has a few different approaches to shared context,
depending on the level at which you want to share context.

4.8.1 Using the constructor for setup

The constructor of a test class can be used to share common setup code for all the test
methods in a class. To see this in action, first create a new rule in the business-day cal-
culator. In the BizDayCalc folder, create a new file called HolidayRule.cs with the fol-
lowing code.

using System;

namespace BizDayCalc
{

For those not familiar with C#
yield return can be used in C# properties that return IEnumerable (or IEnu-
merator). Instead of creating a List or array and returning it immediately, yield
return lets you return each individual item as it’s accessed through the enumerator.

Listing 4.9 Contents of HolidayRule.cs

58 CHAPTER 4 Unit testing with xUnit
 public class HolidayRule : IRule
 {
 public static readonly int[,] USHolidays = {
 { 1, 1 }, // New Year's day
 { 7, 4 }, // Independence day
 { 12, 24 }, // Christmas eve
 { 12, 25 } // Christmas day
 };

 public bool CheckIsBusinessDay(DateTime date)
 {
 for (int day = 0; day <=
 USHolidays.GetUpperBound(0); day++)
 {
 if (date.Month == USHolidays[day, 0] &&
 date.Day == USHolidays[day, 1])
 return false;
 }
 return true;
 }
 }
}

This is a new rule that adds U.S. holidays that are the same from year to year.
 Instead of writing tests against the HolidayRule directly, use the Calculator

class in your test. In the BizDayCalcTests folder, create a new file called USHoliday-
Test.cs with the following code.

using System;
using System.Collections.Generic;
using BizDayCalc;
using Xunit;

namespace BizDayCalcTests
{
 public class USHolidayTest
 {
 public static IEnumerable<object[]> Holidays {
 get {
 yield return new object[] { new DateTime(2016, 1, 1) };
 yield return new object[] { new DateTime(2016, 7, 4) };
 yield return new object[] { new DateTime(2016, 12, 24) };
 yield return new object[] { new DateTime(2016, 12, 25) };
 }
 }

 private Calculator calculator;

 public USHolidayTest()
 {
 calculator = new Calculator();

Listing 4.10 Contents of USHolidayTest.cs

A two-dimensional
array

GetUpperBound gets the highest
index in the given dimension.

The constructor
creates the context.

59Shared context between tests
 calculator.AddRule(new HolidayRule());
 }

 [Theory]
 [MemberData(nameof(Holidays))]
 public void TestHolidays(DateTime date)
 {
 Assert.False(calculator.IsBusinessDay(date));
 }

 [Theory]
 [InlineData("2016-02-28")]
 [InlineData("2016-01-02")]
 public void TestNonHolidays(string date)
 {
 Assert.True(calculator.IsBusinessDay(DateTime.Parse(date)));
 }
 }
}

In the preceding test, the calculator field is instantiated in the constructor and
used by both test methods. The TestHolidays theory will execute four times, and
the TestNonHolidays theory will execute twice. A USHolidayTest object will be
created for each test execution, so the constructor will be called six times. You can ver-
ify this by placing a Console.WriteLine in the constructor, as follows.

public USHolidayTest()
{
 calculator = new Calculator();
 calculator.AddRule(new HolidayRule());
 Console.WriteLine("In USHolidayTest constructor");
}

[Theory]
[InlineData("2016-02-28")]
[InlineData("2016-01-02")]
public void TestNonHolidays(string date)
{
 Assert.True(calculator.IsBusinessDay(DateTime.Parse(date)));
 Console.WriteLine($"In TestNonHolidays {date}");
}

[Theory]
[MemberData(nameof(Holidays))]
public void TestHolidays(DateTime date)
{
 Assert.False(calculator.IsBusinessDay(date));
 Console.WriteLine(
 $"In TestHolidays {date:yyyy-MM-dd}");
}

Listing 4.11 USHolidayTest with Console.WriteLines

$"… {date}" is a shortcut for
inserting values into strings.

:yyyy-MM-dd is used to
format the DateTime.

60 CHAPTER 4 Unit testing with xUnit
In the output you’ll see that the constructor is called before each test method invoca-
tion. Here’s an example of this output:

In USHolidayTest constructor
In TestNonHolidays 2016-02-28
In USHolidayTest constructor
In TestNonHolidays 2016-01-02
In USHolidayTest constructor
In TestHolidays 2016-01-01
In USHolidayTest constructor
In TestHolidays 2016-07-04
In USHolidayTest constructor
In TestHolidays 2016-12-24
In USHolidayTest constructor
In TestHolidays 2016-12-25

4.8.2 Using Dispose for cleanup

Just as common setup code can be added to the constructor, common cleanup code
can be added to the Dispose method. xUnit uses the dispose pattern because it’s a
well-known .NET pattern that’s more intuitive than creating an explicit teardown
method. If you’re already familiar with the dispose pattern, skip the next section.

THE DISPOSE PATTERN

The dispose pattern is a common .NET pattern used to clean up resources. .NET has a
garbage collector built in that will free memory that you’re no longer using. However,
there are cases where you need to free other resources explicitly, such as closing file
handles or network sockets. Consider the following code, taken from chapter 3.

public static void Main(string[] args)
{
 var sr = new StreamReader(new FileStream("Marvel.csv",
 FileMode.Open));
 var csvReader = new CsvReader(sr);
 foreach (var line in csvReader.Lines)
 Console.WriteLine(line.First(p => p.Key == "Title").Value);
}

This code creates a new FileStream that’s passed into a StreamReader. It opens a file
handle, an operating system resource for manipulating files, but it never explicitly
closes it. The file handle will be closed when the process ends, so it’s not an issue for this
scenario. But if your program is opening many files, it should explicitly close them.

 The code from listing 4.12 can be modified as follows.

public static void Main(string[] args)
{
 using (var sr = new StreamReader(new FileStream("Marvel.csv",

Listing 4.12 CSV parsing code from chapter 3

Listing 4.13 CSV parsing code from chapter 3 modified to close the CSV file

61Shared context between tests
 FileMode.Open)))
 {
 var csvReader = new CsvReader(sr);
 foreach (var line in csvReader.Lines)
 Console.WriteLine(line.First(p => p.Key == "Title").Value);
 }
}

The using statement is a helpful C# tool for indicating that the sr object is “dispos-
able” and explicitly defines when it should be disposed of. The using statement is
nice, because if an exception is thrown inside a using block, the disposal will still be
performed.

 A using can only be used on a type that implements the IDisposable interface.
This interface has one method: Dispose(). Note that although using will explicitly
call the Dispose method, the .NET garbage collector won’t. The specifics of garbage
collection and disposal are beyond the scope of this book.

USING THE DISPOSE PATTERN IN XUNIT UNIT TESTS

The business-day calculator library doesn’t need any cleanup code in its unit tests. But
if you were writing unit tests for the CSV parser created in chapter 3, you might want
some cleanup code. The following listing shows how you could use the dispose pat-
tern in a unit test of the CSV parser library.

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using CsvParser;
using Xunit;

namespace CsvParserTests
{
 public class CsvReaderTest : IDisposable
 {
 private StreamReader streamReader;
 private CsvReader csvReader;

 public CsvReaderTest()
 {
 streamReader = new StreamReader(new FileStream("Marvel.csv",
 FileMode.Open));
 csvReader = new CsvReader(streamReader);
 }

 public void Dispose()
 {
 streamReader.Dispose();
 }

Listing 4.14 CSV parser library unit test using dispose pattern

Implements the
IDisposable interface

Your Dispose must call the
StreamReader’s Dispose.

62 CHAPTER 4 Unit testing with xUnit
 [Fact]
 public void VerifyNumberOfLines()
 {
 Assert.Equal(7, csvReader.Lines.Count());
 }
 }
}

Here you open a file in the constructor so that it can be used by each test method. You
then close that file in the Dispose method, which will keep you from leaking open
file handles. Just as the constructor is called before each test method invocation, the
Dispose method is called after each test method invocation.

4.8.3 Sharing context with class fixtures

The constructor in a test class lets you share the setup code for each of the test meth-
ods. But there are cases where you want a setup operation to be performed once and
reused for the entire test class. xUnit’s solution to this is called a class fixture.

 The business-day calculator allows you to add many rules, so you want to test the
case where many rules are applied. It might be an expensive operation to create a cal-
culator that has all the rules if you have to load those rules from a file or a database. In
this case, you can create a class fixture so that the setup and cleanup operations are
only performed once for the whole test class.

 The business-day calculator will operate differently depending on the region it’s
in. For example, the weekend rule in the United States only needs to check if the day
of the week is Saturday or Sunday. But in China, weekends can be moved adjacent to
national holidays. A region would therefore have a collection of applicable rules,
much like your calculator.

 The following listing shows an example of a class fixture that tests the rules for the
United States region.

using BizDayCalc;

namespace BizDayCalcTests
{
 public class USRegionFixture
 {
 public Calculator Calc { get; private set; }

 public USRegionFixture()
 {
 Calc = new Calculator();
 Calc.AddRule(new WeekendRule());
 Calc.AddRule(new HolidayRule());
 }
 }
}

Listing 4.15 Example class fixture for the business-day calculator

Count() is a LINQ
extension method.

A property with a public
getter and private setter

63Shared context between tests
Now create a test that uses the preceding class fixture. Create a new file named
USRegionTest.cs and copy the code from USHolidayTest. The following listing
shows how to modify the test code to use the fixture.

using System;
using BizDayCalc;
using Xunit;

namespace BizDayCalcTests
{
 public class USRegionTest
 : IClassFixture<USRegionFixture>
 {
 private USRegionFixture fixture;

 public USRegionTest(USRegionFixture fixture)
 {
 this.fixture = fixture;
 }

 [Theory]
 [InlineData("2016-01-01")]
 [InlineData("2016-12-25")]
 public void TestHolidays(string date)
 {
 Assert.False(fixture.Calc.IsBusinessDay(
 DateTime.Parse(date)));
 }

 [Theory]
 [InlineData("2016-02-29")]
 [InlineData("2016-01-04")]
 public void TestNonHolidays(string date)
 {
 Assert.True(fixture.Calc.IsBusinessDay(
 DateTime.Parse(date)));
 }
 }
}

To identify exactly how often the class fixture object is created, add a Con-
sole.WriteLine to the fixture’s constructor (be sure to add using System at the
top). You should see it constructed only once, before any of the tests execute.

CLASS FIXTURE CLEANUP You can add cleanup code to class fixtures by using
the same dispose pattern described earlier in this chapter.

4.8.4 Sharing context with collection fixtures

Class fixtures share context for one test class, but you may instead need to share con-
text among multiple test classes. The way to handle this in xUnit is with a collection

Listing 4.16 Contents of USRegionTest.cs

Tells xUnit that this
test uses a class fixture

xUnit creates the object
and passes it to the
test’s constructor.

Using the Calculator
object from the fixture

64 CHAPTER 4 Unit testing with xUnit
fixture. Creating a collection fixture is simple enough that I always create one when
creating a class fixture.

 The first step is to add a second, empty class for the collection fixture that uses the
class fixture. The following listing shows how to do that with the USRegionFixture
class.

using BizDayCalc;
using Xunit;

namespace BizDayCalcTests
{
 public class USRegionFixture
 {
 public Calculator Calc { get; private set; }

 public USRegionFixture()
 {
 Calc = new Calculator();
 Calc.AddRule(new WeekendRule());
 Calc.AddRule(new HolidayRule());
 }
 }

 [CollectionDefinition("US region collection")]
 public class USRegionCollection
 : ICollectionFixture<USRegionFixture>
 {
 }
}

To use the collection fixture in a test class, you need to refer to the collection by
name. The test class doesn’t need to implement the IClassFixture interface.
Besides those two changes, the test class works just as if you were using a class fixture.

 The following listing shows the USRegionTest class modified to use the collection
fixture.

[Collection("US region collection")]
public class USRegionTest
{
 private USRegionFixture fixture;

 public USRegionTest(USRegionFixture fixture)
 {
 this.fixture = fixture;
 }
 ...
}

Listing 4.17 USRegionFixture with a collection fixture

Listing 4.18 USRegionTest with collection fixture

The name of
the collection

The class fixture is what
the test classes will use.

Refers to the
collection by name

Test class no longer
implements interface

Remainder of the
class is the same

65Getting output from xUnit tests
The collection fixture class doesn’t have any setup or cleanup code of its own. That’s
done in the class fixture.

4.9 Getting output from xUnit tests
Using Console.WriteLine to get output from a test is problematic. xUnit typically
runs tests in parallel, so console output will overlap between tests. Also, if you’re using
a build automation system or IDE like Visual Studio, these tools will typically provide
the output from the test cases that fail. If a test passes, you don’t normally want to see
any output from it, but if it fails, the output is useful in diagnosing the failure.
Console.WriteLine won’t work in these situations.

 There’s a better way to write test output. xUnit provides an interface called
ITestOutputHelper that has a WriteLine method on it that you can use to write
test output. Try this out on the USRegionTest test class.

 First, modify the BizDayCalcTests.csproj file to disable the other two tests, as follows.

<ItemGroup>
 <Compile Remove="USHolidayTest.cs" />
 <Compile Remove="WeekendRuleTest.cs" />
</ItemGroup>

Now modify USRegionTest to use ITestOutputHelper.

using System;
using BizDayCalc;
using Xunit;
using Xunit.Abstractions;

namespace BizDayCalcTests
{
 [Collection("US region collection")]
 public class USRegionTest
 {
 private readonly USRegionFixture fixture;
 private readonly ITestOutputHelper output;

 public USRegionTest(
 USRegionFixture fixture,
 ITestOutputHelper output)
 {
 this.fixture = fixture;
 this.output = output;
 }

 [Theory]
 [InlineData("2016-01-01")]
 [InlineData("2016-12-25")]
 public void TestHolidays(string date)

Listing 4.19 Exclude other tests besides USRegionTest.cs

Listing 4.20 USRegionTest using ITestOutputHelper

ITestOutputHelper is
in Xunit.Abstractions.

xUnit will provide the
ITestOutputHelper object.

66 CHAPTER 4 Unit testing with xUnit
 {
 output.WriteLine($@"TestHolidays(""{date}"")");
 Assert.False(fixture.Calc.IsBusinessDay(
 DateTime.Parse(date)));
 }

 [Theory]
 [InlineData("2016-02-29")]
 [InlineData("2016-01-04")]
 public void TestNonHolidays(string date)
 {
 output.WriteLine($@"TestNonHolidays(""{date}"")");
 Assert.True(fixture.Calc.IsBusinessDay(
 DateTime.Parse(date)));
 }
 }
}

When you have an ITestOutputHelper parameter on your constructor, xUnit will
detect that and provide an implementation. It doesn’t matter how many other param-
eters are on the constructor or in what order they appear. The output helper will
know automatically which test you’re running and will correlate the output written for
that test.

 If you run dotnet test, you won’t see the test output because all the tests pass.
To see the output, try changing Assert.False to Assert.True in TestHolidays,
which should produce output like the following.

BizDayCalcTests.USRegionTest.TestHolidays(date: "2016-01-01") [FAIL]
 Assert.True() Failure
 Expected: True
 Actual: False
 Stack Trace:
 C:\dev\BusinessDays\BizDayCalcTests\USRegionTest.cs(28,0):
 at BizDayCalcTests.USRegionTest.TestHolidays(String date)
 Output:
 TestHolidays("2016-01-01")
 Assert.True() Failure
BizDayCalcTests.USRegionTest.TestHolidays(date: "2016-12-25") [FAIL]
 Expected: True
 Actual: False
 Stack Trace:
 C:\dev\BusinessDays\BizDayCalcTests\USRegionTest.cs(28,0):
 at BizDayCalcTests.USRegionTest.TestHolidays(String date)
 Output:
 TestHolidays("2016-12-25")

4.10 Traits
Traits allow you to assign any number of properties to a test. You can use this to orga-
nize tests into categories so you can exercise specific areas of your code. The following
listing shows how you can apply traits to the USRegionTest class.

Listing 4.21 Test output appears only when tests fail

$@"…" combines string
replacement with verbatim

Logged
test
output

67Summary

[Theory]
[InlineData("2016-01-01")]
[InlineData("2016-12-15")]
[Trait("Holiday", "true")]
public void TestHolidays(string date)
{
 output.WriteLine($@"TestHolidays(""{date}"")");
 Assert.False(fixture.Calc.IsBusinessDay(DateTime.Parse(date)));
}

[Theory]
[InlineData("2016-02-28")]
[InlineData("2016-01-02")]
[Trait("Holiday", "false")]
public void TestNonHolidays(string date)
{
 output.WriteLine($@"TestNonHolidays(""{date}"")");
 Assert.True(fixture.Calc.IsBusinessDay(DateTime.Parse(date)));
}

With the traits set, you can specify command-line parameters to xUnit for the traits
you want, as follows.

dotnet test --filter Holiday=true

Total tests: 4. Passed: 4. Failed: 0. Skipped: 0.

See appendix B for more information about specifying traits and other command-line
options.

Additional resources
To learn more about xUnit, try these resources:

 xUnit.Net on GitHub—http://xunit.github.io
 xUnit—https://github.com/xunit/xunit

Summary
In this chapter you learned about unit testing in .NET Core with xUnit, and we cov-
ered some of xUnit’s features. These key concepts were covered:

 Facts and theories
 Providing theory data in different ways
 Sharing context between test cases
 Logging and viewing data from unit tests

These are some important techniques to remember from this chapter:

 Use the dispose pattern to clean up resources.
 The dispose pattern also works on class fixtures.
 Use ITestOutputHelper to correlate logs with individual tests.

Listing 4.22 USRegionTest.cs with traits

Trait is a
name/value pair.

Key and value
are both strings.

http://xunit.github.io
https://github.com/xunit/xunit

68 CHAPTER 4 Unit testing with xUnit
Unit testing is a great way to improve the reliability of your code. Having a suite of
tests helps you build features with confidence and identify breaking changes as your
code evolves. An essential part of any development platform is the ability to unit test.

 In this chapter, we focused on xUnit because it’s supported on .NET Core and is
popular with early adopters. In the next few chapters, you’ll do more interesting
things with .NET Core while using your xUnit testing skills.

Working with relational
databases
Widget Corporation needs to keep better track of their supply chain, so they hire
you to transform their paper-based process into software. You find that each part
used in the manufacturing process comes from a different supplier, and that Wid-
get Corp. is having trouble ordering the right supplies at the right time.

 To solve this problem, you decide to use a relational database. The database will
persist data, making it resilient to shutdown or power failure. It will enforce rela-
tionships between data, so that no one can add an order without indicating the sup-
plier or part. It also makes the data queryable, which allows anyone to determine
what parts are running out and need to be ordered soon. The employees of Widget
Corp. shouldn’t have to learn the SQL commands to enter the data into the data-
base manually. You’ll need to create software that makes it easy for them.

This chapter covers
 Accessing databases with .NET Standard

System.Data classes

 Using the SQLite in-memory database

 Transforming data between objects and tables

 Unit testing data-access code
69

70 CHAPTER 5 Working with relational databases

the
.

 Now you get to apply your .NET Core skills. .NET Core is a great choice for database
applications because of the powerful built-in data-access classes. In this chapter, you’ll
explore the low-level data-access capability that’s built into the .NET Standard—encap-
sulated in the System.Data namespace. But before you start, you need a database.

5.1 Using SQLite for prototyping
If you’re not already familiar with SQLite, it’s an embedded SQL database engine. It
supports both in-memory and file-based options. No installation required—simply ref-
erence the NuGet package and you have a database. Microsoft provides a SQLite cli-
ent library for .NET Standard, which allows you to use SQLite in your .NET Core
applications.

 The best way to learn about SQLite is to start using it. Start by creating a new con-
sole application. The following command-line command creates the new project:

dotnet new console -o SqliteConsoleTest

Edit the SqliteConsoleTest.csproj file as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Data.Sqlite"
 Version="2.0.0" />
 </ItemGroup>

</Project>

Open the Program.cs file and add the following code.

using System;
using Microsoft.Data.Sqlite;

namespace SqliteConsoleTest
{
 public class Program
 {
 public static void Main(string[] args)
 {
 using (var connection = new SqliteConnection(
 "Data Source=:memory:"))
 {
 connection.Open();

Listing 5.1 Including the SQLite dependency in the project file

Listing 5.2 SQLite test code

-o creates a new folder for
project with the name given

Adds a reference to
Microsoft.Data.Sqlite

Creates a connection
to the database

Specifies in-memory database
in the connection string

71Using SQLite for prototyping

“
SQ
 var command = new SqliteCommand(
 "SELECT 1;", connection);
 long result = (long)command.ExecuteScalar();
 Console.WriteLine($"Command output: {result}");
 }
 }
 }
}

If you’ve never worked with relational databases before, there are a lot of new con-
cepts in listing 5.2. Let’s explore these a bit more.

 The first concept is the connection. The database is typically a separate entity from
your program. It manages its own memory, disk, network, and CPU resources. SQLite
is a rare exception in that it runs inside your process. You wouldn’t want to use it in a
production environment because your application and your database would be com-
peting for resources within the same process.

 Because the database is typically separate, you need to connect to it to do anything.
Most database providers, which are part of the client libraries, manage a pool of data-
base connections for you, keyed off of the connection string. The connection string
contains the information that the provider needs to know to establish a connection to
the database or the data file.

 The contents of a connection string are usually spelled out in the database docu-
mentation, but this documentation can be lengthy and perhaps a little intimidating.
When you need a connection string, I recommend https://connectionstrings.com as a
must-have in your developer tool belt. It’s a great, quick reference and covers every
database you can think of.

 Once you’re connected to the database, you perform all of your operations through
commands. You don’t explicitly specify what type of command you’re issuing in listing
5.2. It uses the default value Text, which means a SQL statement or statements.

DON’T KNOW SQL? Don’t worry if you’re new to SQL. This chapter sticks to sim-
ple SQL statements and provides explanations. To get deeper into SQL, check
out Ben Brumm’s SQL in Motion video courses from Manning Publications.

The SQL command you’re executing in listing 5.2 is a query. Typically, you’d query
data from a table, but in this case you’re querying a constant value: 1. If you expect
only one value to come back from a query, you tell the command object to execute the
command as a scalar, and the return value for ExecuteScalar is an object. The
data provider will typically map the databases data types to .NET data types for you.
The value 1 matches the long value type most closely, so you can cast the returned
object to a long using the (long) syntax.

 Execute dotnet run to run the application. The command output should be 1.
 As you can see, SQLite is quick and easy to set up. Plus, it works great with .NET

Core. The “SELECT 1;” query verifies that the SQLite engine is working. Next, let’s
explore how you can build a solution for Widget Corp.

You want to issue a
command to the database.SELECT 1;” is the

L command you
want to execute. You expect the result of

the command to be a
scalar (single value).End of the using

block disposes of the
connection object

https://connectionstrings.com

72 CHAPTER 5 Working with relational databases
5.2 Planning the application and database schema
Before you design your application, you first must understand what Widget Corp.
needs. Their primary concern is that inventory is counted by hand and recorded on
paper, so the values are inaccurate and outdated. Sometimes this results in parts being
ordered too late and causes disruptions in the manufacturing process. Other times, it
results in too many parts being ordered, which takes up valuable warehouse space and
can sometimes lead to disposing of unused parts when a design change requires a dif-
ferent part. Widget Corp. needs to be able to order parts at the right times, which is
easier if the inventory numbers are accurate.

 You also need to get the floor personnel to want to use your system. That means it
should be less complicated or less work than what they’re currently doing.

 Ordering can be automated, requiring intervention only when parts are no longer
needed. Getting the inventory count can be reduced to checking shipments and
marking orders as fulfilled (either by mobile app or web). You won’t try to handle late,
incomplete, or incorrect order fulfillment in this example.

5.2.1 Tracking inventory

There are three things you need to track Widget Corp.’s inventory accurately:

 The current, accurate inventory counts
 An adjustment every time an order is fulfilled
 An adjustment every time a part is removed from inventory

Widget Corp. does a full inventory check every month. That gives your software a tar-
geted release date so that you can take advantage of a count that’s already occurring.
The supervisor at the loading dock is in charge of handling incoming shipments, so
instead of supervisors recording incoming shipments on paper, you could provide a
simple mobile app where they could mark an order as fulfilled when it comes in. You
expect there to be several incoming shipments per week.

 All suppliers mark their parts with barcodes, so you can provide a mobile app that
allows a factory worker to scan the barcode of a part before it’s used or discarded. In
the current system, a warehouse manager keeps track of everything going in and out.
This manager becomes a bottleneck when there are many simultaneous requests. By
allowing each factory worker unhindered access to the warehouse, they can get the
parts they need more quickly. The barcode system also means that parts can be
located closer to their stations, rather than in a central warehouse.

 Relational databases like SQLite organize data into tables. There are other con-
structs besides tables, but they’re not necessary for this example. A database design is
called a schema. To create a schema, you’ll need to design your tables, the columns for
those tables, and how they relate to each other.

 Let’s start with a table that holds data about the type of part and a table that holds
the inventory counts. These are shown in tables 5.1 and 5.2.

73Planning the application and database schema

Each of the parts that Widget Corp. uses has a unique name. Although you could use
those names directly in all the other tables, that would result in the data being
repeated everywhere. If the name of the part were to change, you’d have to change it
everywhere that part name is used in the database. Plus, it’s a waste of storage space.
By adding an Id column, you’re allowing other tables to reference the part with only
an integer. Each row of the PartType table will have a unique Id.

The InventoryItem table is an example of a table that refers to a part. Instead of
storing the name of the part directly, it references the PartType table’s Id column.
Notice that InventoryItem doesn’t have its own Id column. This is because you only
want one count per part. Therefore, the PartTypeId can be treated as the unique Id
of the InventoryItem table.

 You’ll use a simple mechanism for determining when to place an order for new
parts. In the InventoryItem table, the OrderThreshold column indicates that
when the Count is at or below the threshold, a new order will be placed.

5.2.2 Creating tables in SQLite

Try creating a table in SQLite to see how it works. You can create the tables using SQL
statements.

 Because the creation of the tables isn’t part of the application you’re building, you
can split that process out into a separate step. Instead of modifying the console appli-
cation from the previous section, create a new set of projects using the following com-
mands:

cd ..
mkdir CreateTablesTest
cd CreateTablesTest
dotnet new classlib -o WidgetScmDataAccess
dotnet new xunit -o SqliteScmTest

Table 5.1 The PartType table for storing each type of part used by Widget Corp

Data type Description

int Unique ID for part

varchar Name of the part

Table 5.2 The InventoryItem table for storing inventory data

Name Data type Description

PartTypeId int The type of part

Count int Total number of units available

OrderThreshold int If supply drops below this number, order more

Data-access
project

Unit-test project to exercise
the data-access project

74 CHAPTER 5 Working with relational databases

Ad
the P
WidgetScmDataAccess will have the data-access logic for the application. Sqlite-
ScmTest will be the unit-test project. The test project will create the tables in SQLite
and populate them with example data.

 Data-access projects usually don’t create or alter the database schema—they’re
concerned with the data itself. The responsibility of creating the schema typically falls
outside of the data access project. To create the schema in an in-memory database,
you’ll have the unit test project do that work on startup.

 In chapter 4 you learned about using class fixtures in xUnit as a means to share
context between tests. A class fixture serves as a great place to initialize a SQLite data-
base for testing. Add a new file to the SqliteScmTest project called SampleScmData-
Fixture.cs, and add the following code.

using System;
using System.Data.Common;
using Microsoft.Data.Sqlite;

namespace SqliteScmTest
{
 public class SampleScmDataFixture : IDisposable
 {
 public SqliteConnection Connection { get; private set; }

 public SampleScmDataFixture()
 {
 var conn = new SqliteConnection("Data Source=:memory:");
 Connection = conn;
 conn.Open();

 var command = new SqliteCommand(
 @"CREATE TABLE PartType(
 Id INTEGER PRIMARY KEY,
 Name VARCHAR(255) NOT NULL
);", conn);
 command.ExecuteNonQuery();
 command = new SqliteCommand(
 @"INSERT INTO PartType
 (Name)
 VALUES
 ('8289 L-shaped plate')",
 conn);
 command.ExecuteNonQuery();
 }

 public void Dispose()
 {
 if (Connection != null)
 Connection.Dispose();
 }
 }
}

Listing 5.3 Contents of SampleScmDataFixture.cs

System.Data.Common defines
common data-access types.

The connection object is
disposable, so the fixture
should dispose of it.

SQL statement to create
the PartType table

Creates the Id
column; sets it

 as primary key
VARCHAR(255) means variable length
of characters, as many as 255

You’re not querying
anything, so it’s a NonQuery.ds an entry to

artType table
List of columns you’re
providing data forThe data for the

Name column

75Planning the application and database schema
In this example, the data fixture executes a SQL statement that creates the PartType
table. The statement includes specifications for each column in the format “[Name]
[Type] [Constraints]”, and the types vary for each database. Often, database types are
more specific than the value types in a programming language. For example, a data-
base cares a lot about how much space data will take up. When designing a database
schema, you have to consider this, as it will have an impact on what types you’ll use.

 There are two different constraints used in listing 5.2: NOT NULL and PRIMARY
KEY. NOT NULL ensures that the column can’t have a null value. You’ll get an error if
you try to insert a null value into the Name column. PRIMARY KEY is actually a com-
bination of NOT NULL and UNIQUE. UNIQUE indicates that each row in the table must
have a distinct value for the Id column. Notice, though, that you don’t insert a value
for Id, and the code still works. In this case, SQLite automatically adds a value for Id.
In other databases, like SQL Server, this doesn’t happen automatically unless the col-
umn is indicated as an identity column.

RETURN VALUE OF EXECUTENONQUERY Although ExecuteNonQuery means
the command isn’t a query, that doesn’t mean data doesn’t get returned. The
return value of ExecuteNonQuery is an integer indicating the number of
rows affected by the command. You can also use this method if you’re execut-
ing a command that has output parameters or return values mapped to
parameters. We won’t go into these uses in this book.

This class fixture creates the PartType table and inserts a single row. It exposes one
property called Connection of type Microsoft.Data.SqliteConnection, which
inherits from System.Data.Common.DbConnection.

 The System.Data.Common namespace has some fundamental common types for
interacting with data stores, and most data-access client libraries implement the
abstract classes and interfaces from that namespace. A data-access library should stick
to the System.Data.Common namespace as much as possible so that different data-
bases can be used, such as SQLite for development and test and SQL Server for pro-
duction. Because SqliteConnection inherits from DbConnection, you can use that
connection object in your data-access library.

 Now modify UnitTest1.cs to use SampleScmDataFixture. To do this, try the fol-
lowing code.

using Xunit;

namespace SqliteScmTest
{
 public class UnitTest1 : IClassFixture<SampleScmDataFixture>
 {
 private SampleScmDataFixture fixture;

 public UnitTest1(SampleScmDataFixture fixture)
 {

Listing 5.4 Modifying UnitTest1.cs to use SampleScmDataFixture

76 CHAPTER 5 Working with relational databases

depe
on
 this.fixture = fixture;
 }

 [Fact]
 public void Test1()
 {
 Assert.True(true);
 }
 }
}

The test method in this class doesn’t do anything interesting, but its presence is
enough to trigger the constructor of the test class, and therefore the constructor and
Dispose method of SampleScmDataFixture. Before executing the test, edit the
project file as follows.

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
 <PackageReference Include="Microsoft.Data.Sqlite"
 Version="2.0.0" />
 <PackageReference Include="System.Data.Common"
 Version="4.3.0" />
 <PackageReference Include="System.Runtime.Serialization.Primitives"
 Version="4.3.0" />
</ItemGroup>

Now you can run dotnet test. If the test is successful, the creation of the table and
row insert was done correctly.

5.3 Creating a data-access library
You’ve created the test harness for your data-access library, including a database
schema and some sample data. Now you’ll add some code to the WidgetScmData-
Access library created in the previous section.

 The first thing to think about is a class to hold the data for each part. Add a Part-
Type.cs file to the WidgetScmDataAccess folder with the following code.

namespace WidgetScmDataAccess
{
 public class PartType
 {
 public int Id { get; internal set; }
 public string Name { get; set; }
 }
}

Listing 5.5 Dependencies to add to the SqliteScmTest.csproj

Listing 5.6 Code for the PartType class that will hold the data for each part

As long as one test is run,
the class fixture is used.

Add
ndency
 SQLite

System.Data.Common is
not part of .NET Standard.

Don’t allow modifying the
Id outside of this library.

77Creating a data-access library

ro
The next thing you need is a way to hydrate the PartType objects. Hydrate is the term
commonly used for the process of setting all the members of an object. The data-access
library reads the values from a row in the PartType table and sets the properties of the
PartType object representing that row. There are many ways to do this, but the one
you’ll use is a single context class—context meaning that the class understands how to
work with all the objects and tables that are related to each other in a certain context.

 Your context class will take a DbConnection object and populate a list with all the
part type data from the source table. For this example, as shown in listing 5.7, you’re
only interested in retrieving the data, not creating, updating, or deleting it. You’ll also
cache all the part data. This isn’t something you’d do lightly in a real application
where parts can change, but it keeps your sample code simple.

using System.Collections.Generic;
using System.Data.Common;

namespace WidgetScmDataAccess
{
 public class ScmContext
 {
 private DbConnection connection;

 public IEnumerable<PartType> Parts { get; private set; }

 public ScmContext(DbConnection conn)
 {
 connection = conn;
 ReadParts();
 }

 private void ReadParts()
 {
 using (var command = connection.CreateCommand())
 {
 command.CommandText = @"SELECT Id, Name
 FROM PartType";
 using (var reader = command.ExecuteReader())
 {
 var parts = new List<PartType>();
 Parts = parts;
 while (reader.Read())
 {
 parts.Add(new PartType() {
 Id = reader.GetInt32(0),
 Name = reader.GetString(1)
 });
 }
 }
 }
 }
 }
}

Listing 5.7 Code for the ScmContext class that will get data from the data store

Explicitly lists columns
instead of using SELECT *

Output of command
has multiple rows

Moves to next
w, returns false
if no more rows

Shortcut notation in C# to set
properties on initialization

Reads the Id column
as a 32-bit integer
(int or Int32 in C#)

Reads the Name
column as a string

78 CHAPTER 5 Working with relational databases
This is the first time you’ve encountered the use of ExecuteReader. It returns an
object that implements the System.Data.Common.DbDataReader class. A data
reader is good for queries that return one or more rows of data. In this case, the SQL
statement indicates that you want all the rows from the PartType table with the col-
umns arranged Id first, then Name. The reader has an internal cursor that starts off
before the first row, so your first call to Read() will move the cursor to the first row if
there is one. If no rows were returned by the query, Read() returns false.

 Once you’ve moved the cursor to a row, you can extract data from each column. In
listing 5.7, you use GetInt32(0) and GetString(1) for the Id and Name columns
respectively. The SQL statement laid out the order explicitly, so you can use that order
when extracting the values. GetInt32(0) will get the value from the first column
(using zero-based numbering) and attempt to cast it to a 32-bit integer. The data
reader will throw an InvalidCastException if the provider doesn’t interpret the
database type as a 32-bit integer. In other words, it only casts; it doesn’t attempt to con-
vert the value. You couldn’t, for example, call GetString(0) on the Id column
because the database type for that column isn’t interpreted as a string.

LIMIT ACCESS TO YOUR INTERNAL COLLECTIONS By exposing the Parts property
in listing 5.7 as an IEnumerable<T> instead of a List<T>, you’re indicating
to developers who use this property that you intend this collection to be treated
as read-only. Because the data type behind it is a List, a developer could sim-
ply cast Parts as a List and make modifications, so there’s no enforcement.
But you could change the underlying collection type as long as it implements
IEnumerable, so those who cast it to a List do so at their own risk.

EXPLICITLY SPECIFY COLUMNS Specifying the columns in the query is pre-
ferred to using a SELECT *, which returns all the columns but doesn’t guar-
antee their order. It’s also easy to forget to update the code if the columns in
the table are changed.

Other ways to get the column values
Instead of using the Get methods on DbDataReader, you can use the indexer. An
indexer is a shortcut in C# that allows you to apply an index to an object as if it were
an array. For example, the code to get the Id could look like this: Id =
(int)reader[0]. The DbDataReader has an indexer that will get the column value
from the current row and return it as an object. You can then cast it. The GetInt32
method only does a cast anyway, so the statements are roughly equivalent.

If you don’t like syncing to your query’s column order, you can also pass the name of
the column into the indexer. That would look like this: Id = (int)reader["Id"].
Note that this searches for the column (first case-sensitive then case-insensitive). Be
careful not to make assumptions about case-insensitive search, as it’s affected by
the language. You’ll learn about languages and localization in chapter 10.

79Creating a data-access library
Now it’s time to test this code. Start by modifying the project file of the Widget-
ScmDataAccess project to match the following listing.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.2</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="System.Data.Common"
 Version="4.3.0" />
 </ItemGroup>

</Project>

Remove the Class1.cs file in this project, because it’s not used.
 Now switch back to the SqliteScmTest project and add a test. First, modify the proj-

ect file to reference the data-access library by adding this line: <ProjectReference
Include="../WidgetScmDataAccess/WidgetScmDataAccess.csproj" />.
Then modify the UnitTest1.cs file to include Test1, as follows.

using System.Linq;
using Xunit;
using WidgetScmDataAccess;

namespace SqliteScmTest
{
 public class UnitTest1 : IClassFixture<SampleScmDataFixture>
 {
 private SampleScmDataFixture fixture;
 private ScmContext context;

 public UnitTest1(SampleScmDataFixture fixture)
 {
 this.fixture = fixture;
 this.context = new ScmContext(fixture.Connection);
 }

 [Fact]
 public void Test1()
 {
 var parts = context.Parts;
 Assert.Equal(1, parts.Count());
 var part = parts.First();
 Assert.Equal("8289 L-shaped plate", part.Name);
 }
 }
}

Listing 5.8 Modifying WidgetScmDataAccess.csproj to include System.Data.Common

Listing 5.9 Modify UnitTest1.cs to test for the part created in SampleScmDataFixture

Try to use the lowest
possible .NET Standard
version you can.

Needed for Count()
and First()

Add using for
library project

There’s only one part type,
and you know its contents.

80 CHAPTER 5 Working with relational databases
From here, you can run dotnet test to get the test going. When xUnit starts the
test, the fixture object will create the PartType table and add a row. Then the
ScmContext object will use the connection exposed by the fixture to get all the rows
from the PartType table and create a PartType object for each one. System.Linq
exposes an extension method called Count() that can count how many elements are
in an IEnumerable. The First() method is another System.Linq extension
method that gets the first item in the collection.

 With a relatively small amount of work, you’ve created a mock data store and a
rudimentary data-access library. But you’ve only added the PartType table. You’ve yet
to add inventory items to your database. To do that, you’ll need to explore relation-
ships in databases and how they correlate to your .NET code.

5.3.1 Specifying relationships in data and code

The PartType table only has two columns: Id and Name. The InventoryItem table
you’ll create next references the Id column from PartType in a one-to-one relation-
ship. As mentioned before, I chose this approach because you have several tables that
refer to parts, and you don’t want to copy the name of the part into each row of each
table. It also gives you the flexibility to add more attributes to parts later on.

 Figure 5.1 shows the database schema for your application. The line connecting the
PartType and InventoryItem tables indicates that there is a foreign-key relation-
ship. The rest of the tables and relationships will become clear later in the chapter.

 In SQLite, you can specify foreign keys when you create the table. Add the Inven-
toryItem table to your fixture by modifying SampleScmDataFixture.cs as follows.

public class SampleScmDataFixture : IDisposable
{
 private const string PartTypeTable =
 @"CREATE TABLE PartType(
 Id INTEGER PRIMARY KEY,
 Name VARCHAR(255) NOT NULL
);";
 private const string InventoryItemTable =
 @"CREATE TABLE InventoryItem(
 PartTypeId INTEGER PRIMARY KEY,
 Count INTEGER NOT NULL,
 OrderThreshold INTEGER,
 FOREIGN KEY(PartTypeId) REFERENCES PartType(Id)
);";

 public SampleScmDataFixture()
 {
 var conn = new SqliteConnection("Data Source=:memory:");
 Connection = conn;
 conn.Open();

 (new SqliteCommand(PartTypeTable, conn)).ExecuteNonQuery();
 (new SqliteCommand(InventoryItemTable, conn)).
 ExecuteNonQuery();

Listing 5.10 Code to create tables in SampleScmDataFixture

Foreign key relationships
can be defined in the table.

A short way to create
an object and call a

method on it

81Creating a data-access library
 (new SqliteCommand(
 @"INSERT INTO PartType
 (Id, Name)
 VALUES
 (0, '8289 L-shaped plate')",
 conn)).ExecuteNonQuery();
 (new SqliteCommand(
 @"INSERT INTO InventoryItem
 (PartTypeId, Count, OrderThreshold)
 VALUES
 (0, 100, 10)",
 conn)).ExecuteNonQuery();
 }
}

Specifies Id this time because you
want the tests to be consistent

PartType and InventoryItem have
a “foreign key” relationship, where
the PartTypeId in the InventoryItem
table must match an Id in
the PartType table.

Supplier has a PartTypeId
foreign key to an Id in
the PartType table.

Order also has a PartTypeId
foreign key to an Id in the
PartType table.

PartCommand has a
PartTypeId foreign key to
an Id in the PartType table.

Order has a SupplierId
foreign key to an Id in
the Supplier table.

Figure 5.1 Database schema of the supply-chain management application

82 CHAPTER 5 Working with relational databases
CALLING A METHOD ON A NEW OBJECT In listing 5.10, you use shorthand for
creating the SqliteCommand objects and executing a method on them. You
don’t use the objects for anything else in the code, so we don’t need to
declare a variable.

You need a class to hold the rows of the InventoryItem table. In the data-access
library, add a new class called InventoryItem and add the following code.

namespace WidgetScmDataAccess
{
 public class InventoryItem
 {
 public int PartTypeId { get; set; }
 public int Count { get; set; }
 public int OrderThreshold { get; set; }
 }
}

You already have a ReadParts method in the ScmContext class. Now you need to
add a new method to read the inventory. You’ll use the same approach of reading all
the items in the constructor and exposing them through an IEnumerable property.
Add the following code to ScmContext.

public class ScmContext
{
 public IEnumerable<InventoryItem> Inventory { get; private set; }

 public ScmContext(DbConnection conn)
 {
 connection = conn;
 ReadParts();
 ReadInventory();
 }

 private void ReadInventory()
 {
 using (var command = connection.CreateCommand())
 {
 command.CommandText = @"SELECT
 PartTypeId, Count, OrderThreshold
 FROM InventoryItem";
 using (var reader = command.ExecuteReader())
 {
 var items = new List<InventoryItem>();
 Inventory = items;
 while (reader.Read())
 {
 items.Add(new InventoryItem() {
 PartTypeId = reader.GetInt32(0),

Listing 5.11 InventoryItem class

Listing 5.12 Adding code to the ScmContext class for inventory items

83Creating a data-access library
 Count = reader.GetInt32(1),
 OrderThreshold = reader.GetInt32(2)
 });
 }
 }
 }
 }
}

Finally, modify the test to verify that the inventory items show up. Alter the Test1
method in UnitTest1 as follows.

[Fact]
public void Test1()
{
 var parts = context.Parts;
 Assert.Equal(1, parts.Count());
 var part = parts.First();
 Assert.Equal("8289 L-shaped plate", part.Name);
 var inventory = context.Inventory;
 Assert.Equal(1, inventory.Count());
 var item = inventory.First();
 Assert.Equal(part.Id, item.PartTypeId);
 Assert.Equal(100, item.Count);
 Assert.Equal(10, item.OrderThreshold);
}

You’ve defined a relationship between the PartType and InventoryItem tables, but
you haven’t yet created a relationship in the code. When you use an InventoryItem
object, you probably want to know what the name of the part is, and there are many
ways to get the PartType object. The following listing shows how you can use a LINQ
expression to get the PartType.

public class InventoryItem
{
 public int PartTypeId { get; set; }
 public PartType Part { get; set; }
 public int Count { get; set; }
 public int OrderThreshold { get; set; }
}

using System.Linq;
public class ScmContext
{
 public ScmContext(DbConnection conn)
 {
 connection = conn;
 ReadParts();

Listing 5.13 Test method to verify InventoryItem objects are populated correctly

Listing 5.14 Using a LINQ expression to populate the PartType of an InventoryItem

Adds a property to access
the PartType directly

Adds a using
for LINQ

84 CHAPTER 5 Working with relational databases
 ReadInventory();
 }

 private void ReadInventory()
 {
 var command = connection.CreateCommand();
 command.CommandText = @"SELECT
 PartTypeId, Count, OrderThreshold
 FROM InventoryItem";
 var reader = command.ExecuteReader();
 var items = new List<InventoryItem>();
 Inventory = items;
 while (reader.Read())
 {
 var item = new InventoryItem() {
 PartTypeId = reader.GetInt32(0),
 Count = reader.GetInt32(1),
 OrderThreshold = reader.GetInt32(2)
 };
 items.Add(item);
 item.Part = Parts.Single(p =>
 p.Id == item.PartTypeId);
 }
 }
}

There are many different ways to hydrate objects with relationships. For example, you
could have the Part property on InventoryItem only retrieve the PartType object
when it’s first asked for (using the get on the property). You could also use a tech-
nique called lazy-loading, where the PartType table would only be queried when a
part was needed. This means the InventoryItem class would need to keep a refer-
ence to the context class. The InventoryItem class couldn’t be defined in a differ-
ent assembly, because that would create a circular reference. These are things to keep
in mind when designing your application.

5.3.2 Updating data

The inventory counts are now stored in the InventoryItem table. In response to an
event, such as a factory worker getting parts from inventory, or a shipment arriving at
the loading dock, you’ll need to update the count. But there are many factory workers
and many shipments, and they all work at the same time. Modifying the count directly
can be dangerous if two or more actors attempt it simultaneously.

 To handle this situation, many applications used a technique called eventual consis-
tency. In this case, instead of each inventory count change making a direct update to
the InventoryItem table, you can record the decrease or increase in a separate table
that acts like a queue. A single-threaded processor can then process those records seri-
ally. This is called eventual consistency because the inventory count will eventually
catch up to reality, but there’s a possibility that the count you retrieve is stale. Impor-
tance is placed on the availability of the inventory numbers rather than their accuracy.

Single ensures that there’s
only one PartType.

Assumes Parts is
already populated

85Creating a data-access library
CAP THEOREM Choosing availability over consistency is a tradeoff I make
because of the CAP theorem. CAP stands for consistency, availability, and par-
tition-tolerance, and the theorem states that you can only have two of the
three at the same time in a service. We won’t get into partition-tolerance in
this book, but it’s generally considered not optional if you want a distributed
service that scales. That leaves the choice between consistency and availability.
An argument can be made for both sides when it comes to keeping inventory
numbers. If you’re curious, you should look up the CAP theorem, sometimes
called Brewer’s theorem, after the computer scientist who created it.

The way you’ll achieve eventual consistency is through a technique called Command
Query Responsibility Segregation (CQRS). In this technique, queries are performed
against one object (the InventoryItem table) while updates are performed against
different objects. Updates will be stored in a command object you’ll call Part-
Command (see table 5.3).

Each row in the PartCommand table records an action against the part inventory: the
inventory for a particular part is increased or decreased by a count. It’s therefore not
important in what order the commands are processed (although there is the possibil-
ity of a negative count). It’s more important that a command is executed only once. If
you need an accurate part count, you can wait until all the commands are processed—
after business hours or on weekends, for example.

 With this approach, a single-threaded processor will read the commands and update
the inventory count. It’s easier to guarantee consistency with a single-writer, multiple-
reader system than it is with a multiple-writer, multiple-reader system, which is what you
would have if you didn’t use commands and updated the inventory table directly.

 Add a new file to WidgetScmDataAccess called PartCommand.cs with the follow-
ing code. This class will be used to add rows to or remove them from the Part-
Command table.

namespace WidgetScmDataAccess
{
 public class PartCommand
 {
 public int Id { get; set; }

Table 5.3 The PartCommand table contains all the commands made to modify the inventory.

Name Data type Description

Id int Unique ID for the inventory modification

PartTypeId int Type of part

PartCount int Number of parts to add or remove from inventory

Command varchar “Add” or “Remove”

Listing 5.15 Contents of PartCommand class

86 CHAPTER 5 Working with relational databases

The
re
is
 public int PartTypeId { get; set; }
 public PartType Part { get; set; }
 public int PartCount { get; set; }
 public PartCountOperation Command { get; set; }
 }

 public enum PartCountOperation
 {
 Add,
 Remove
 }
}

PartCountOperation is an enumeration, which makes it easier to work with in code.
Otherwise, you’d need to use a string or an integer, and define somewhere what the
acceptable values were for that field. C# enum types are backed by integers, so you can
choose to store the command in the database as either an integer (0 or 1) or a string
(“Add” or “Remove”). I prefer to store the string, because other applications may read
the same database (such as reporting software) and not understand the integer.

DATABASE NORMALIZATION You could alternatively create a PartCount-
Operation table with an Id column and a foreign key relationship to the Com-
mand column in PartCommand. This is much like how you created the
PartType table. The goal here is to reduce redundant data (like multiple cop-
ies of the strings “Add” and “Remove”) and improve data integrity (by enforc-
ing that only “Add” and “Remove” can be used). This is called normalization.

A factory worker pulls items from inventory, so in your application you’ll create a Part-
Command object that captures this action. It will need to be saved to the database, but
we’ll skip creating the table, because you’re familiar with that code by now. The full
code for creating all the tables is included in the companion GitHub repo for this book.

 Let’s move on to creating the new row in the PartCommand table. Add the
CreatePartCommand method to the ScmContext class using the following code.

public void CreatePartCommand(PartCommand partCommand)
{
 var command = connection.CreateCommand();
 command.CommandText = @"INSERT INTO PartCommand
 (PartTypeId, Count, Command)
 VALUES
 (@partTypeId, @partCount, @command);
 SELECT last_insert_rowid();";
 AddParameter(command, "@partTypeId", partCommand.PartTypeId);
 AddParameter(command, "@partCount", partCommand.PartCount);
 AddParameter(command, "@command",
 partCommand.Command.ToString());
 long partCommandId = (long)command.ExecuteScalar();
 partCommand.Id = (int)partCommandId;
}

Listing 5.16 Method to add a part command to the database

Enumerations are used
for discrete sets of values.

The @ denotes
a parameter.

Gets the Id for the
row inserted to the
PartCommand table

Sets the Id on the
PartCommand object, in
case the caller wants it

 scalar
turned
 the Id.

Converts the enum to a
string (“Add” or “Remove”)

87Creating a data-access library
In the SQL statement, you use parameters instead of adding the values directly into
the command text string. You didn’t do this when inserting rows in your test code
because it’s test code. The ScmContext class is intended for use in production. When-
ever you add values to a SQL statement, you should use parameters. We’ll get into
some of the reasons why later in this chapter.

 Another odd thing in listing 5.16 is the statement SELECT last_insert_
rowid(). This function is part of SQLite. When inserting a row into the PartCommand
table, SQLite automatically populates the Id column. You use the last_

insert_rowid() function to get the value that SQLite used for that Id column.
 The CreatePartCommand code also makes use of a helper method called Add-

Parameter, which creates a DbParameter and adds it to the DbCommand object. The
following listing shows the code for this method.

private void AddParameter(DbCommand cmd, string name, object value)
{
 var p = cmd.CreateParameter();
 if (value == null)
 throw new ArgumentNullException("value");
 Type t = value.GetType();
 if (t == typeof(int))
 p.DbType = DbType.Int32;
 else if (t == typeof(string))
 p.DbType = DbType.String;
 else if (t == typeof(DateTime))
 p.DbType = DbType.DateTime;
 else
 throw new ArgumentException(
 $"Unrecognized type: {t.ToString()}", "value");
 p.Direction = ParameterDirection.Input;
 p.ParameterName = name;
 p.Value = value;
 cmd.Parameters.Add(p);
}

The AddParameter method doesn’t handle null values, but it’s reasonable that a
parameter passed to a command could have a null value, because certain columns
allow null values. The problem is that you can’t call a method, such as GetType(),
on a null value. You need to specify a DbType that matches the column’s type, so in
listing 5.17 you’re using the .NET type of the value parameter to infer a DbType. If
you had an overload of the AddParameter method that took a DbType parameter,
you wouldn’t have to throw the exception for a null value.

 Your single-threaded, eventually consistent processor will read the commands
from the PartCommand table and make updates to the InventoryItem table. The
following listing has the code to retrieve all the PartCommand objects in order by Id.

Listing 5.17 AddParameter method creates DbParameter objects

Your code isn’t smart enough
to handle null values.

typeof() isn’t a constant,
so you can’t use a switch.

If the type of value
isn’t recognized,
throws an exception Type.ToString()

will write the full
type name.

You’re only using this helper
method for input parameters.

Adds the parameter
to the command

88 CHAPTER 5 Working with relational databases

public IEnumerable<PartCommand> GetPartCommands()
{
 var command = connection.CreateCommand();
 command.CommandText = @"SELECT
 Id, PartTypeId, Count, Command
 FROM PartCommand
 ORDER BY Id";
 var reader = command.ExecuteReader();
 var partCommands = new List<PartCommand>();
 while (reader.Read())
 {
 var cmd = new PartCommand() {
 Id = reader.GetInt32(0),
 PartTypeId = reader.GetInt32(1),
 PartCount = reader.GetInt32(2),
 Command = (PartCountOperation)Enum.Parse(
 typeof(PartCountOperation),
 reader.GetString(3))
 };
 cmd.Part = Parts.Single(p => p.Id == cmd.PartTypeId);
 partCommands.Add(cmd);
 }

 return partCommands;
}

Listing 5.18 GetPartCommands method: reads all the PartCommand rows in the table

Parsing enumerations
The Enum.Parse() method takes a string and attempts to match it to one of the
enum values. The Enum class doesn’t have a generic method like T Parse<T>
(string), which would be less verbose, but there is a bool TryParse<T>
(string, out T) method. That’s a better method to use if Command has an unrec-
ognized value or is null. To use it, instead of setting Command in the initialization
of the PartCommand object, add the following code:

PartCountOperation operation;
if (Enum.TryParse<PartCountOperation>(reader.GetString(3), out operation))
 cmd.Command = operation;

Getting data in order
Integer identity columns like your Id columns typically start at 0 and increment for
each row inserted. The count never decrements for rows deleted, so don’t rely on it
as a count of rows in the table.

Identity columns are also not reliable as a way of ordering the rows, especially if
there are multiple simultaneous inserts to the table. You could try using a timestamp

Orders by Id ascending; Ids
are usually incremented
for each row inserted.

Converts the string
back to an enum

89Creating a data-access library
5.3.3 Managing inventory

You can now add rows to and retrieve rows from the PartCommands table. But you
still haven’t handled updating theInventoryItem table.

 Add another method to the ScmContext class with the following code.

public void UpdateInventoryItem(
 int partTypeId, int count)
{
 var command = connection.CreateCommand();
 command.CommandText = @"UPDATE InventoryItem
 SET Count=@count
 WHERE PartTypeId=@partTypeId";
 AddParameter(command, "@count", count);
 AddParameter(command, "@partTypeId", partTypeId);
 command.ExecuteNonQuery();
}

After PartCommand has been applied to the inventory, you need to delete the record
from the table so you don’t process it again. Add another method to ScmContext to
delete the row, as follows.

public void DeletePartCommand(int id)
{
 var command = connection.CreateCommand();
 command.CommandText = @"DELETE FROM PartCommand
 WHERE Id=@id";
 AddParameter(command, "@id", id);
 command.ExecuteNonQuery();
}

Next, create a new class called Inventory to manage the inventory, as shown in the
next listing.

using System;
using System.Linq;

to order the rows, but you should use the database to generate the timestamp instead
of the application. If the application runs on multiple machines, there’s no guarantee
that the clocks are synced. Also, you’re limited by the precision of the timestamp.

What you should really be thinking about is whether order really matters, or whether
you can make your application robust enough to handle commands out of order.

Listing 5.19 Method to update the part count in the InventoryItem table

Listing 5.20 Method to delete the PartCommand row from the table

Listing 5.21 Creating the Inventory class

You’ll use partTypeId to
identify the InventoryItem.

SQL statement to
update rows in a table

You can list multiple columns
separated by commas.

Only updates rows that have
the partTypeId you specify

SQL statement to delete
rows from a table

You’ll be using these
namespaces later.

90 CHAPTER 5 Working with relational databases
namespace WidgetScmDataAccess
{
 public class Inventory
 {
 private ScmContext context;
 public Inventory(ScmContext context)
 {
 this.context = context;
 }

 public void UpdateInventory() {}
 }
}

The UpdateInventory method is the one you want to execute in a single thread,
because it will be performing the database updates. The first step in UpdateInven-
tory is to go through all the PartCommand objects and update the inventory counts.
Add the following code to the UpdateInventory method.

foreach (var cmd in context.GetPartCommands())
{
 var item = context.Inventory.Single(i =>
 i.PartTypeId == cmd.PartTypeId);
 if (cmd.Command == PartCountOperation.Add)
 item.Count += cmd.PartCount;
 else
 item.Count -= cmd.PartCount;

 context.UpdateInventoryItem(item.PartTypeId,
 item.Count);
 context.DeletePartCommand(cmd.Id);
}

Now test this code. In the SqliteScmTest project, open UnitTest1.cs and add a new test
method with the following code.

[Fact]
public void TestPartCommands()
{
 var item = context.Inventory.First();
 var startCount = item.Count;
 context.CreatePartCommand(new PartCommand() {
 PartTypeId = item.PartTypeId,
 PartCount = 10,
 Command = PartCountOperation.Add
 });
 context.CreatePartCommand(new PartCommand() {

Listing 5.22 Updates the inventory counts based on the PartCommands

Listing 5.23 Test if the part commands correctly update the inventory count

Must have the context to
get and update data

This method will
be filled in later.

Gets all the PartCommands
from the table

Gets the InventoryItem for the
part mentioned in the command

Updates the count

Deletes the PartCommand
so you don’t duplicate it

91Creating a data-access library
 PartTypeId = item.PartTypeId,
 PartCount = 5,
 Command = PartCountOperation.Remove
 });
 var inventory = new Inventory(context);
 inventory.UpdateInventory();
 Assert.Equal(startCount + 5, item.Count);
}

In this test, you’re adding 10 items to the inventory and removing 5 items. You want to
make sure both commands are processed correctly.

5.3.4 Using transactions for consistency

There’s a nasty flaw in listing 5.23 that could cause you some sleepless nights and
cause Widget Corp. not to trust the inventory count. What would happen if the dele-
tion of the row from thePartCommand table failed, or if it never executed because of a
process crash, hardware failure, power outage, or some other disastrous event? When
the application starts up again, it would process the same PartCommand it’s already
processed. The inventory count would be wrong, and the only way you’d know is if you
stopped everything, did a full count, and compared the numbers.

 You need something that can guarantee that if a failure occurs while you’re updat-
ing InventoryItem or deleting from PartCommand, both of these commands will be
undone. The term for this is a transaction. A transaction groups several actions and
ensures that either all of those actions occur or none of them do.

SQLite is a transactional database, though the durability part doesn’t apply if you’re
using an in-memory database like you are here.

 To get a transaction, you’ll need a DbTransaction object, which is created from
the DbConnection object. Because you don’t expose the connection used inside
ScmContext, you’ll need to provide a method to get a transaction object. Add the fol-
lowing code to ScmContext.

ACID transactions
Database transactions are atomic, consistent, isolated, and durable (ACID):

 Atomic—This refers to the all-or-nothing approach. If any part of the transac-
tion fails, the whole transaction fails, and the database is unchanged.

 Consistent—All changes are valid, meaning that they don’t violate con-
straints, foreign key relationships, and so on.

 Isolated—It shouldn’t matter if transactions are executed concurrently, mean-
ing there shouldn’t be any incomplete state from one transaction that affects
another.

 Durable—Once the transaction is committed, the database will remain
changed even in the event of a crash, hardware issue, or other disaster.

InventoryItem object is
updated with database

92 CHAPTER 5 Working with relational databases

public DbTransaction BeginTransaction()
{
 return connection.BeginTransaction();
}

Now add transactions to the UpdateInventory method of the Inventory class.
Modify the code as follows.

foreach (var cmd in context.GetPartCommands())
{
 var item = context.Inventory.Single(i =>
 i.PartTypeId == cmd.PartTypeId);
 var oldCount = item.Count;
 if (cmd.Command == PartCountOperation.Add)
 item.Count += cmd.PartCount;
 else
 item.Count -= cmd.PartCount;

 var transaction = context.BeginTransaction();
 try {
 context.UpdateInventoryItem(item.PartTypeId,
 item.Count, transaction);
 context.DeletePartCommand(cmd.Id, transaction);
 transaction.Commit();
 }
 catch {
 transaction.Rollback();
 item.Count = oldCount;
 throw;
 }
}

TRANSACTION ROLLBACKS DON’T AFFECT OBJECTS DbTransaction only
applies to the database, so you have to manually restore the InventoryItem
object back to its original state. Therefore, you need to set the Count prop-
erty back to its original value.

In listing 5.25 you pass the DbTransaction object to the UpdateInventoryItem
and DeletePartCommand methods so they can be used on the DbCommand objects.
Update those methods with the following code.

public void DeletePartCommand(int id, DbTransaction transaction)
{
 var command = connection.CreateCommand();
 if (transaction != null)
 command.Transaction = transaction;

Listing 5.24 Method to get a DbTransaction object from the ScmContext object

Listing 5.25 Update the inventory counts based on the PartCommands

Listing 5.26 Update DeletePartCommand and UpdateInventoryItem

Stores the old count in case
the transaction fails

Creates a new
database transaction

UpdateInventoryItem
needs to use the same
transaction object.

Deletes the
PartCommand under
the transaction as well

Commits the transaction
if there are no errors

Rolls back the transaction
if an error occurredSets the item count

back to its old value

Transaction only
needs to be applied
to the DbCommand

93Ordering new parts from suppliers
 command.CommandText = @"DELETE FROM PartCommand
 WHERE Id=@id";
 AddParameter(command, "@id", id);
 command.ExecuteNonQuery();
}

public void UpdateInventoryItem(int partTypeId, int count,
 DbTransaction transaction)
{
 var command = connection.CreateCommand();
 if (transaction != null)
 command.Transaction = transaction;
 command.CommandText = @"UPDATE InventoryItem
 SET Count=@count
 WHERE PartTypeId=@partTypeId";
 AddParameter(command, "@count", count);
 AddParameter(command, "@partTypeId", partTypeId);
 command.ExecuteNonQuery();
}

To test this out, try throwing an exception from DeletePartCommand or Update-
Inventory just before the call to Commit(). You should see in both the Inventory-
Item object and the database that the part count hasn’t changed. You can rest assured
that at least this operation is resilient.

 Now that you have the inventory handled, let’s move on to handling orders.

5.4 Ordering new parts from suppliers
Widget Corp. orders parts from its suppliers via email. For this example, let’s assume
that each supplier only supplies one part. In the real world, suppliers offer multiple
parts and at different prices, which becomes too complicated for this example.

 Given these restrictions, your Supplier table looks like table 5.4.

We established earlier that there’s an order threshold in the InventoryItem table
that tells the application when to order new parts. When the threshold is exceeded
(when the part count goes below the threshold), the application should send an email
to the supplier. You only want to send one email at a time until the order is fulfilled.
Otherwise, you could end up with duplicate orders and receive too many parts.

Table 5.4 Supplier table containing the names, email addresses, and part types of each supplier

Name Data type Description

Id int Unique ID for the supplier

Name varchar Supplier name

Email varchar Email to order parts from

PartTypeId int Type of part this supplier provides

Transaction only
needs to be applied
to the DbCommand

94 CHAPTER 5 Working with relational databases
 To handle this, you’ll create two records in the database: one for the order and
one for the command to send an email. The tables for these are outlined in tables 5.5
and 5.6 respectively.

The same single-threaded processor we use to update the inventory will create the
orders. After processing all the PartCommand objects, it checks each item to see if the
part count is below the threshold. If there are no outstanding orders for an item, it
creates new records in the Order and SendEmailCommand tables. Another processor
is responsible for sending the emails.

5.4.1 Creating an Order

An order consists of two things, a row in the Order table and a row in the Send-
EmailCommand table, so you should create these records as part of a transaction. Start
by defining the Order class, as shown in the next listing.

using System;

namespace WidgetScmDataAccess
{
 public class Order
 {

Table 5.5 Order table contains all the orders made to suppliers

Name Data type Description

Id int Unique order ID

SupplierId int ID of the supplier to which this order was
sent

PartTypeId int The type of part ordered

PartCount int Number of parts ordered

PlacedDate date The date on which the order was placed

FulfilledDate date The date the order was fulfilled

Table 5.6 SendEmailCommand table contains commands to send order emails

Name Data type Description

Id int Unique ID for the email

To varchar Email address to send to

Subject varchar Subject line of email

Body varchar Body of email

Listing 5.27 Order class

95Ordering new parts from suppliers

T

 public int Id { get; set; }
 public int SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 public int PartTypeId { get; set; }
 public PartType Part { get; set; }
 public int PartCount { get; set; }
 public DateTime PlacedDate { get; set; }
 }
}

Listing 5.28 shows how you’ll create the records in the Order and SendEmail-
Command tables. The CreateOrder method, shown in the following listing, takes an
Order object with all the properties filled in (except the Id property).

public void CreateOrder(Order order)
{
 var transaction = connection.BeginTransaction();
 try {
 var command = connection.CreateCommand();
 command.Transaction = transaction;
 command.CommandText = @"INSERT INTO [Order]
 (SupplierId, PartTypeId, PartCount,
 PlacedDate) VALUES (@supplierId,
 @partTypeId, @partCount, @placedDate);
 SELECT last_insert_rowid();";
 AddParameter(command, "@supplierId", order.SupplierId);
 AddParameter(command, "@partTypeId", order.PartTypeId);
 AddParameter(command, "@partCount", order.PartCount);
 AddParameter(command, "@placedDate", order.PlacedDate);
 long orderId = (long)command.ExecuteScalar();
 order.Id = (int)orderId;

 command = connection.CreateCommand();
 command.Transaction = transaction;
 command.CommandText = @"INSERT INTO SendEmailCommand
 ([To], Subject, Body) VALUES
 (@To, @Subject, @Body)";
 AddParameter(command, "@To",
 order.Supplier.Email);
 AddParameter(command, "@Subject",
 $"Order #{orderId} for {order.Part.Name}");
 AddParameter(command, "@Body", $"Please send {order.PartCount}" +
 $" items of {order.Part.Name} to Widget Corp");
 command.ExecuteNonQuery();

 transaction.Commit();
 }
 catch {
 transaction.Rollback();
 throw;
 }
}

Listing 5.28 The CreateOrder method

Order is a special keyword
in SQLite, so you have to
surround it with brackets.

Sets the Id in case the caller
of CreateOrder needs it

o is another
SQLite

keyword. The Supplier property
must be populated.

The Part property
must be populated.

96 CHAPTER 5 Working with relational databases
SEE COMPANION REPO FOR TABLE CREATION CODE In listing 5.28, I’m making
the assumption that the Order and SendEmailCommand tables already exist.
You should already be pretty familiar with creating tables, but if you don’t
want to type all of that code, the full source code for this book is available on
GitHub at http://mng.bz/F146.

Notice that in order to send the email, you need to have the Supplier and Part
properties filled in on the Order object. One issue that could occur is that the caller
of CreateOrder doesn’t specify one of these properties. This would result in a
NullReferenceException, which would cause the transaction to roll back.

 Test this out. In the SqliteScmTest project, add a new test to UnitTest1.cs with the
following code. This code shows how you can execute CreateOrder, encounter an
exception that causes a rollback, and verify that the order record wasn’t created.

[Fact]
public void TestCreateOrderTransaction()
{
 var placedDate = DateTime.Now;
 var supplier = context.Suppliers.First();
 var order = new Order()
 {
 PartTypeId = supplier.PartTypeId,
 SupplierId = supplier.Id,
 PartCount = 10,
 PlacedDate = placedDate
 };
 Assert.Throws<NullReferenceException>(() =>
 context.CreateOrder(order));

SQL injection
Let’s consider briefly what could happen if you weren’t using parameters to construct
the SQL statement. The code for setting the command text would look like this:

command.CommandText = $@"INSERT INTO SendEmailCommand
 ([To], Subject, Body) VALUES
 ('{order.Supplier.Email}', '{order.Part.Name}', '{body}')";

What if the part name had a single quote character in it like “John’s bearing”? This
would cause the command text to be an invalid SQL string, and your application would
be unable to place orders for this part. By using a parameter, you don’t have to worry
about this.

Hackers search for weaknesses like SQL statements built as strings. The technique
is called SQL injection, and it puts you at risk of compromising or losing all your data.
As a best practice, always use parameters when writing SQL statements.

Also check out a great XKCD comic on this subject at https://xkcd.com/327.

Listing 5.29 Unit test to verify that CreateOrder is transactional

Supplies the part
and supplier IDs,
but not the objects

You expect the code
you’re calling to throw a
NullReferenceException. xUnit catches and

checks that it’s a
NullReferenceException.

https://xkcd.com/327
http://mng.bz/F146

97Ordering new parts from suppliers
 var command = new SqliteCommand(
 @"SELECT Count(*) FROM [Order] WHERE
 SupplierId=@supplierId AND
 PartTypeId=@partTypeId AND
 PlacedDate=@placedDate AND
 PartCount=10 AND
 FulfilledDate IS NULL",
 fixture.Connection);
 AddParameter(command, "@supplierId", supplier.Id);
 AddParameter(command, "@partTypeId", supplier.PartTypeId);
 AddParameter(command, "@placedDate", placedDate);
 Assert.Equal(0, (long)command.ExecuteScalar());
}

In this test, the PartType and Supplier objects aren’t set in the Order object. You
know from the code in listing 5.29 that the first INSERT command will work but the
second will fail. The test verifies that the transaction successfully rolls back the first
change.

SIMPLER TRANSACTIONS WITH SYSTEM.TRANSACTIONS

In the .NET Framework, there’s another way to create transactions that doesn’t
involve explicitly setting the transaction on each command. This is particularly help-
ful if you’re using an external library that’s performing database work but that doesn’t
let you pass in a DbTransaction object. This functionality is built into a library called
System.Transactions.

LIMITED SUPPORT OF SYSTEM.TRANSACTIONS System.Transactions was
only added to .NET Core as of version 2.0. SQLite currently doesn’t support it
as I’m writing this book. However, it’s likely to be supported soon.

System.Transactions is part of .NET Core but not of .NET Standard, so you’ll
have to modify WidgetScmDataAccess.csproj as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="System.Data.Common"
 Version="4.3.0" />
 </ItemGroup>

</Project>

The code for using a System.Transactions transaction is a little simpler than for
the DbTransaction method: create a TransactionScope and use the using block

Listing 5.30 Change project to .NET Core for System.Transactions

“SELECT Count(*)”
counts the number
of rows matching
the query.

Looks for the specific
order, because there

may be other tests

Copies the
AddParameter code
from ScmContext to
the unit test class

Verifies the count is 0

The setting
to modify

98 CHAPTER 5 Working with relational databases
and dispose pattern to automatically roll back in case of a failure. The following listing
shows how the CreateOrder method could be rewritten to use TransactionScope.

using System.Transactions;

public void CreateOrderSysTx(Order order)
{
 using (var tx = new TransactionScope())
 {
 var command = connection.CreateCommand();
 command.CommandText = @"INSERT INTO [Order]
 (SupplierId, PartTypeId, PartCount,
 PlacedDate) VALUES (@supplierId,
 @partTypeId, @partCount, @placedDate);
 SELECT last_insert_rowid();";
 AddParameter(command, "@supplierId", order.SupplierId);
 AddParameter(command, "@partTypeId", order.PartTypeId);
 AddParameter(command, "@partCount", order.PartCount);
 AddParameter(command, "@placedDate", order.PlacedDate);
 long orderId = (long)command.ExecuteScalar();
 order.Id = (int)orderId;

 command = connection.CreateCommand();
 command.CommandText = @"INSERT INTO SendEmailCommand
 ([To], Subject, Body) VALUES
 (@To, @Subject, @Body)";
 AddParameter(command, "@To", order.Supplier.Email);
 AddParameter(command, "@Subject",
 $"Order #{orderId} for {order.Part.Name}");
 AddParameter(command, "@Body", $"Please send {order.PartCount}" +
 $" items of {order.Part.Name} to Widget Corp");
 command.ExecuteNonQuery();

 tx.Complete();
 }
}

TRANSACTIONS AND ASYNCHRONOUS CODE The TransactionScope creates
an ambient transaction on the thread. If you call other methods from your
code that create database operations, they’ll also participate in the transac-
tion. You can also use TransactionScope in async methods, which can
move to different threads, by specifying the TransactionScopeAsync-
FlowOption.

As I warned earlier, data-access providers have to opt in to take advantage of the
TransactionScope. Because this is relatively new to .NET Core 2.0, it may not be
available immediately in your data-access library of choice. But it is a useful feature,
and it’s worth knowing about when writing applications with .NET Core.

DISTRIBUTED TRANSACTIONS NOT SUPPORTED IN .NET CORE In the .NET Frame-
work, System.Transactions was capable of enlisting operations on multiple

Listing 5.31 CreateOrder rewritten to use TransactionScope

Adds the System.Transactions
namespace

Creates an ambient
transaction

Commands that are run
within the transaction scope
automatically participate.

Tells the TransactionScope
that everything is good

99Ordering new parts from suppliers
databases into a single transaction. This is not available in .NET Core. In order
to support multiple databases, System.Transactions will promote a trans-
action from local to distributed. Distributed transactions are managed by a
Windows component called the Distributed Transaction Coordinator (DTC),
but there’s no equivalent on other operating systems. System.Transac-
tions in .NET Core only supports local transactions, meaning all transactions
for the same database.

5.4.2 Checking if parts need to be ordered

After processing all of the PartCommand records and updating the InventoryItem
table, the next step of UpdateInventory is to determine what part counts have
dropped below the order threshold. Orders need to be created for those parts unless
you already have outstanding orders for them.

 To determine if you have an outstanding order, add a property to Order that indi-
cates if and when the order was fulfilled, as shown in the next listing.

using System;

namespace WidgetScmDataAccess
{
 public class Order
 {
 public int Id { get; set; }
 public int SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 public int PartTypeId { get; set; }
 public PartType Part { get; set; }
 public int PartCount { get; set; }
 public DateTime PlacedDate { get; set; }
 public DateTime? FulfilledDate { get; set; }
 }
}

In the Inventory class’s UpdateInventory method, append the following code to
the end of the method.

var orders = context.GetOrders();

foreach (var item in context.Inventory)
{
 if (item.Count < item.OrderThreshold &&
 orders.FirstOrDefault(o =>
 o.PartTypeId == item.PartTypeId &&
 !o.FulfilledDate.HasValue) == null)
 {

Listing 5.32 Order class

Listing 5.33 Code to add in UpdateInventory

FulfilledDate
can be null.

Checks if count is
below threshold

Finds orders
for this part

Checks if fulfilled
date is null

100 CHAPTER 5 Working with relational databases
 OrderPart(item.Part, item.OrderThreshold);
 }
}

We haven’t yet defined the ScmContext.GetOrders or Inventory.OrderPart
methods. OrderPart provides a reference for what logic the Inventory.Update-
Inventory method uses. GetOrders will get all the orders in the Ordertable, and
you can then use a LINQ query on the returned collection to check whether orders
already exist for inventory items that have counts lower than the threshold. First-
OrDefault will return either the first item in the collection that matches the query,
or null if nothing matches. The query looks for the PartTypeId and checks that the
order is still unfulfilled (FulfilledDate is null).

 The number of parts to order could be complicated. For this example, you’re using
the order threshold, since it’s easier. Also remember that if an order isn’t fulfilled, it’s
considered outstanding. That’s why you allowed FulfilledDate to be null in the-
Order table. But that also means you have to handle null values in your code.

HANDLING NULL VALUES

Notice in listing 5.33 that FulfilledDate has a property called HasValue. Let’s
explore this a bit more. First, go back and look at the code in listing 5.33. The
FulfilledDate property has the type DateTime?, where the “?” indicates that it’s a
nullable type. HasValue is a Boolean property indicating whether the value is null.

When you read data from the Order table, you need to special-case the Fulfilled-
Date property as follows.

public IEnumerable<Order> GetOrders()
{

What is a nullable type?
C#, like many C-based languages, has two types of variables: reference and value. A
reference type is a pointer to a memory location, whereas value types directly contain
the values of the variables. Examples of value types include int, bool, and
double. A struct in C# is also a value type, and DateTime is a struct.

Value types can’t be assigned to the null value because null refers to an empty
reference (pointer) value. In cases like our example, where the FulfilledDate
might not contain a value, if you can’t set it to null, then you have to pick a value
that represents null. This can be problematic for other developers using the library
if they don’t understand the convention.

Luckily, C# has the concept of nullable types. This creates a wrapper around a value
type that indicates whether that value has been set. The ? is actually a shorthand
that makes it much easier to read the code. For more information on nullable types
and other interesting bits of C#, see Jon Skeet’s C# in Depth, Fourth Edition (Manning,
2018).

Listing 5.34 Reading the Order records from the table

Orders the same number
of parts as the threshold

101Ordering new parts from suppliers
 var command = connection.CreateCommand();
 command.CommandText = @"SELECT
 Id, SupplierId, PartTypeId, PartCount, PlacedDate, FulfilledDate
 FROM [Order]";
 var reader = command.ExecuteReader();
 var orders = new List<Order>();
 while (reader.Read())
 {
 var order = new Order() {
 Id = reader.GetInt32(0),
 SupplierId = reader.GetInt32(1),
 PartTypeId = reader.GetInt32(2),
 PartCount = reader.GetInt32(3),
 PlacedDate = reader.GetDateTime(4),
 FulfilledDate = reader.IsDBNull(5) ?
 default(DateTime?) : reader.GetDateTime(5)
 };
 order.Part = Parts.Single(p => p.Id == order.PartTypeId);
 order.Supplier = Suppliers.First(s => s.Id == order.SupplierId);
 orders.Add(order);
 }

 return orders;
}

TERNARY OPERATOR The line that populates the FulfilledDate property in
listing 5.34 uses something called a ternary operator. If you haven’t seen this in
other programming languages before, it’s basically a shorthand for doing an
if/else within an expression, where if and else both return a value of the
same type. The syntax is <bool> ? <then> : <else>. Try not to confuse
the ternary operator with the nullable type operator.

FILLING IN THE ORDER OBJECT

The only method you haven’t yet completed is OrderPart. You’ve seen before that
not populating all the properties in the Order object will cause an exception. Order-
Part is a helper method to hydrate the Order object and create the order, as shown
in the following listing.

public void OrderPart(PartType part, int count)
{
 var order = new Order() {
 PartTypeId = part.Id,
 PartCount = count,
 PlacedDate = DateTime.Now
 };
 order.Part = context.Parts.Single(p => p.Id == order.PartTypeId);
 order.Supplier = context.Suppliers.First(
 s => s.PartTypeId == part.Id);
 order.SupplierId = order.Supplier.Id;
 context.CreateOrder(order);
}

Listing 5.35 OrderPart helper method to hydrate the Order object and create the order

Checks if it’s null
in the table with
ternary operator

default() gives you a
Nullable<DateTime>

with HasValue false.

Note that you’ll need to have
data in the Supplier table first.

102 CHAPTER 5 Working with relational databases
Now test out this whole process. In the SqliteScmTest project, add another test to
UnitTest1.cs with the following code.

[Fact]
public void TestUpdateInventory()
{
 var item = context.Inventory.First();
 var totalCount = item.Count;
 context.CreatePartCommand(new PartCommand() {
 PartTypeId = item.PartTypeId,
 PartCount = totalCount,
 Command = PartCountOperation.Remove
 });

 var inventory = new Inventory(context);
 inventory.UpdateInventory();
 var order = context.GetOrders().FirstOrDefault(
 o => o.PartTypeId == item.PartTypeId &&
 !o.FulfilledDate.HasValue);
 Assert.NotNull(order);

 context.CreatePartCommand(new PartCommand() {
 PartTypeId = item.PartTypeId,
 PartCount = totalCount,
 Command = PartCountOperation.Add
 });

 inventory.UpdateInventory();
 Assert.Equal(totalCount, item.Count);
}

This test doesn’t check for the SendEmailCommand record, but that’s easy enough to
add. In a real application, the UpdateInventory method would execute on a regular
interval. New PartCommand records can be created at any time. The interval on which
the SendEmailCommand records are processed can be separate, giving Widget Corp. a
chance to evaluate them before the emails are sent.

Additional resources
To learn more about what we covered in this chapter, try the following resources:

 Ben Brumm, SQL in Motion—http://mng.bz/i433
 ADO.NET Overview—http://mng.bz/f0lM

Summary
In this chapter you learned about working with relational data in .NET Core and we
covered some useful data-access features.

Listing 5.36 Test that UpdateInventory creates an Order when part count is zero

Drops the part
count down to 0

UpdateInventory should check the
thresholds and create the order.

Makes sure an order was
created for this part

Puts the part count
back to where it was

Need to run UpdateInventory
to process the PartCommand

http://mng.bz/i433
http://mng.bz/f0lM

103Summary
 These are the key concepts from this chapter:

 System.Data.Common classes are database-agnostic, allowing you to prototype
with SQLite or another lightweight database, yet still use a full-featured data-
base in production.

 In-memory databases make unit testing data-access code predictable.
 Transactions allow multiple changes to be made in an all-or-nothing fashion, so

data can be kept consistent.

You also used a few techniques that you should keep in mind when writing data-access
code:

 Use identity columns in database tables to simplify your code.
 Use nullable types to allow nulls in value types that don’t support null.
 Use specific fields in your SELECT statements rather than using SELECT * to

guarantee the order and number of fields, so your code doesn’t break when the
database schema changes.

As you can see from this chapter, even a simple data model can turn into a lot of code.
Most of the projects I’ve worked on have had relational databases. There are many
ways to access databases from .NET, and libraries wax and wane in popularity—this
chapter focused on the low-level way to access data in .NET. It provides a solid founda-
tion; we’ll build a better understanding of the high-level data-access libraries in the
next chapter.

Simplify data access with
object-relational mappers
Your implementation of supply chain management software was a success, and now
Widget Corporation would like to expand its capabilities. They want touchscreens
for their assembly-line workers; daily, weekly, and monthly reports; and a bunch of
other new features. The head of your consulting company decides that this should
be a product that you can sell to other customers, so she starts hiring new team
members to help you build it.

 The low-level data-access layer you built worked great when there was only one cli-
ent and one database. Now you’ve got to think about appealing to customers with all
kinds of databases. Your team members also find that the code for interacting with

This chapter covers
 Implementing a data-access layer with an object-

relational mapper (ORM)

 Comparing a micro-ORM (Dapper) with a full-
featured ORM (Entity Framework Core)

 Using Microsoft.Extensions libraries to build a
data-access layer
104

105Dapper
the relational database is tedious and subject to human error. They suggest using an
ORM, but there are so many choices, and you’re not sure which one to use.

This chapter intends to arm you with experience of .NET Core ORMs so you’re better
able to make decisions about what works best in your application. We’ll look at two dif-
ferent kinds of ORMs: full-featured ORMs and micro-ORMs. Both have advantages
and disadvantages, but both automate some of the boilerplate code needed to convert
between objects and relational databases. The full-featured ORM we’ll look at is called
Entity Framework Core, which is a part of .NET Core. But first, let’s explore a library
called Dapper, which has been ported to .NET Standard, to see what a micro-ORM is
capable of in .NET Core.

6.1 Dapper
Stack Overflow and the rest of Stack Exchange are powered by a custom ORM library
called Dapper. Dapper is considered a micro-ORM because it doesn’t write SQL queries
for you like many full-featured ORMs. It only tries to simplify the process of convert-
ing between objects and relational data.

 In the previous chapter, you created a data-access layer for your supply chain man-
agement application. You’ll continue with that example and convert your existing
code to use Dapper. I suggest copying the code to a new folder called DapperTest.

 Go to the DapperTest\WidgetScmDataAccess folder and edit the project file so it
looks like the following.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.3</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="System.Data.Common"
 Version="4.3.0" />

What is object-relational mapping?
An object-relational mapper (ORM) performs the conversion between objects and rela-
tional database entities. It understands certain strategies for mapping tables to
objects and vice versa. It also converts programming language data types such as
strings and integers to and from database types like VARCHAR and Blob. Complex
ORMs handle things like database functions, stored procedures, and mapping object
hierarchies to tables.

Listing 6.1 Modify WidgetScmDataAccess.csproj to add Dapper dependency

Dapper uses .NET
Standard 1.3.

106 CHAPTER 6 Simplify data access with object-relational mappers
 <PackageReference Include="Dapper"
 Version="1.50.2" />
 </ItemGroup>

</Project>

In chapter 5 you used a DbCommand to execute SQL commands and a DbDataReader
to read the rows of output from that command into objects. Recall the ReadParts
method from that chapter, and compare it to how the same can be achieved with Dap-
per. Both are shown in the following listing.

private void ReadParts()
{
 var command = connection.CreateCommand();
 command.CommandText = @"SELECT Id, Name
 FROM PartType";
 var reader = command.ExecuteReader();
 var parts = new List<PartType>();
 Parts = parts;
 while (reader.Read())
 {
 parts.Add(new PartType() {
 Id = reader.GetInt32(0),
 Name = reader.GetString(1)
 });
 }
}

private void ReadPartsDapper()
{

How to tell which versions of the .NET Standard are supported
by a package
To determine which versions (there can be more than one) of the .NET Standard a
package supports, find the package on nuget.org. That site contains a section called
Dependencies that you can expand to see what frameworks the package depends on.
Dapper lists .NET Framework 4.5.1, .NET Standard 1.3, and .NET Standard 2.0. It
lists two different versions of .NET Standard because it may have more features in
2.0 than in 1.3.

If your package isn’t on nuget.org, you can still determine what frameworks it sup-
ports by looking inside the package. Change the .nupkg extension to .zip, or find the
package in your NuGet cache (see appendix D). If the package contains a folder
called lib, the folders in there will match the target framework monikers (see chapter
3 or appendix A) of the supported framework. If you don’t see a lib folder, the package
is probably a metapackage, and you’ll have to chase down its dependencies to see
what frameworks they support.

Listing 6.2 ReadParts from chapter 5 compared with the Dapper version

Dapper started supporting .NET
Standard as of version 1.50.

Old method from chapter 5

Specifies columns

Reads one row
at a time

Creates a new PartType
object per row

Manually converts the
database types to C# types

Dapper version
of ReadParts

107Dapper
 Parts = connection.Query<PartType>(
 "SELECT * FROM PartType");
}

A single line of code in Dapper replaces the whole ReadParts method. Let’s unpack
listing 6.2 a bit to understand how.

 The connection field from ScmContext is a standard DbConnection object.
Dapper defines a set of extension methods that apply to DbConnection, one of which
is Query. Query is a generic method, meaning you use C# generics to specify that the
rows returned from the SQL query will fit into PartType objects. Dapper uses reflec-
tion to determine the properties of the PartType class as well as their names and
types, and maps them to the columns returned by the SQL query. Dapper only tries to
match columns and properties by name, so anything that doesn’t match is skipped.
That’s why you don’t have to specify columns in the SQL query. Query returns an
IEnumerable of the class you specified in the generic type parameter (the type speci-
fied in angle brackets).

 You can use Query to get the inventory and suppliers. Let’s look at how that
changes the constructor of ScmContext in the next listing.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Linq;
using Dapper;

namespace WidgetScmDataAccess
{
 public class ScmContext
 {
 private DbConnection connection;
 public IEnumerable<PartType> Parts { get; private set; }
 public IEnumerable<InventoryItem> Inventory { get; private set; }
 public IEnumerable<Supplier> Suppliers { get; private set; }

 public ScmContext(DbConnection conn)
 {
 connection = conn;
 Parts = conn.Query<PartType>("SELECT * FROM PartType");
 Inventory = conn.Query<InventoryItem>("SELECT * FROM InventoryItem");
 foreach (var item in Inventory)
 item.Part = Parts.Single(p => p.Id == item.PartTypeId);
 Suppliers = conn.Query<Supplier>("SELECT * FROM Supplier");
 foreach (var supplier in Suppliers)
 supplier.Part = Parts.Single(p => p.Id == supplier.PartTypeId);
 }
 }
}

Listing 6.3 ScmContext class rewritten to use Dapper

Query is an extension method
from the Dapper library.

No need to
order columns

Some of these usings
are only needed later.

Used for Single
extension method

Adds Dapper
library

Dapper won’t auto-populate
class properties like Part.

108 CHAPTER 6 Simplify data access with object-relational mappers
Both the Supplier and InventoryItem classes reference PartType objects. The
Dapper Query method will populate the value of PartTypeId for Supplier and
InventoryItem, but it has no way of magically locating the PartType objects you
read earlier. That’s why you need to set the Part property explicitly on these objects.
Although Dapper can’t do everything, it saves a lot of the boilerplate of executing the
command, reading the rows, and mapping columns to properties.

6.1.1 Inserting rows with Dapper

Dapper can also map an object’s properties to the parameters in an INSERT SQL
statement. Try creating an order with both System.Data and Dapper. You’ll simplify
it to just adding the row to the Order table and leave out the SendEmailCommand
and transactions for this example. The following listing shows both approaches.

public void CreateOrder(Order order)
{
 var command = connection.CreateCommand();
 command.CommandText = @"INSERT INTO [Order]
 (SupplierId, PartTypeId, PartCount,
 PlacedDate) VALUES (@supplierId,
 @partTypeId, @partCount, @placedDate);
 SELECT last_insert_rowid();";
 AddParameter(command, "@supplierId",
 order.SupplierId);
 AddParameter(command, "@partTypeId", order.PartTypeId);
 AddParameter(command, "@partCount", order.PartCount);
 AddParameter(command, "@placedDate", order.PlacedDate);
 long orderId = (long)command.ExecuteScalar();
 order.Id = (int)orderId;
}

public void CreateOrderDapper(Order order)
{
 order.Id =
 connection.Query<int>(
 @"INSERT INTO [Order]
 (SupplierId, PartTypeId, PartCount,
 PlacedDate) VALUES (@SupplierId,
 @PartTypeId, @PartCount, @PlacedDate);
 SELECT last_insert_rowid();",
 order).First();
}

Both methods use the same SQL statement, with the exception of the slight alteration
to the parameter names, because Dapper uses a case-sensitive comparison on the
property names of the Order object. Both methods assign the integer return value to
the Id property. But where the System.Data approach needs eight C# statements
(counting the semicolons), the Dapper approach only needs one.

Listing 6.4 Creating a row in the Order table with System.Data and Dapper

Recall that this gets
the unique ID for the
just-inserted row.

AddParameter is a
helper method to
create a DbParameter.

ExecuteScalar returns one
value, which is the ID.

Applies the ID to
the Order object

Dapper version
of CreateOrder

Dapper won’t automatically
set the Id.

Note that the parameter
names are case-sensitive.

Return value for Query is
IEnumerable<int>, hence the First()

109Dapper
6.1.2 Applying transactions to Dapper commands

The CreateOrder method from chapter 5 inserted a row into two different tables as
part of a transaction: the row in the Orders table marks that an order was placed, and
the row in the SendEmailCommand table signals another system to send an email to the
supplier. You need to create either both records or neither of them (in case of a failure),
so you created a DbTransaction object on the DbConnection and applied that trans-
action object to each DbCommand. In Dapper, you do basically the same thing.

 The following listing shows how you can rewrite the CreateOrder method to use
Dapper.

public void CreateOrder(Order order)
{
 var transaction = connection.BeginTransaction();
 try {
 order.Id = connection.Query<int>(
 @"INSERT INTO [Order]
 (SupplierId, PartTypeId, PartCount,
 PlacedDate) VALUES (@SupplierId,
 @PartTypeId, @PartCount, @PlacedDate);
 SELECT last_insert_rowid();", order,
 transaction).First();

 connection.Execute(@"INSERT INTO SendEmailCommand
 ([To], Subject, Body) VALUES
 (@To, @Subject, @Body)", new {
 To = order.Supplier.Email,
 Subject = $"Order #{order.Id} for {order.Part.Name}",
 Body = $"Please send {order.PartCount}" +
 $" items of {order.Part.Name} to Widget Corp"
 }, transaction);

 transaction.Commit();
 }
 catch {
 transaction.Rollback();
 throw;
 }
}

Listing 6.5 CreateOrder method rewritten to use Dapper

What is an anonymous type?
In listing 6.5 you can only supply one object to the Dapper Execute method, and
that object should have properties matching the parameters in the SQL statement.
You could create a class for this, but it would only be used in this one place. C# pro-
vides a mechanism for this, called anonymous types. An anonymous type is a read-
only class with a name you don’t care about. They’re most commonly used in LINQ
expressions, but they’re also useful for other situations.

Creates
DbTransaction
object

Adds the transaction
to the command

Uses Execute
instead of Query

Creates an
anonymous
type to hold
the parameters

Adds the transaction
to this command tooCommits on success

Rolls back on failure

http://mng.bz/3G45

110 CHAPTER 6 Simplify data access with object-relational mappers
The syntax of an anonymous type is new { Property1 = value1, Property2 =
value2 }. This overloads the new operator to create an instance of a new anonymous
type.

 You don’t need to return a SendEmailCommand, so you don’t need to get the
last_insert_rowid() from the insert command, which means you can use Exe-
cute instead of Query. Think of Execute as equivalent to the ExecuteNonQuery
method from the DbCommand class. It executes the SQL statements and returns the
number of rows affected.

6.1.3 The drawback of a micro-ORM

You’ve seen how easy it is to use Dapper. It saves you from a lot of boilerplate code and
maintains great performance. Depending on your application, however, there’s a
drawback to using Dapper—and micro-ORMs in general. The problem is that you’re
writing SQL in your application code, and SQL isn’t standardized.

 SQL isn’t the same for every database. SQLite will have different syntax and capa-
bilities than SQL Server and PostgreSQL. For example, in SQLite you used
last_insert_rowid() to get the ID for the row inserted by the previous statement.
In SQL Server, you’d use SCOPE_IDENTITY(), and in PostgreSQL you’d use INSERT
INTO … RETURNING id.

 In order to support different databases, you could turn ScmContext into an inter-
face. To add support for a new database, you’d then create a new implementation of
that interface. Figure 6.1 illustrates such a design.

Data access implementations

DataAccessFactory

SqliteScmContext<<Interface>>
IScmContext

Inventory: InventoryItem

SqlServerScmContext

PostgreScmContext

Parts: PartType

1

Suppliers: Supplier

BeginTransaction(): DbTransaction

CreateOrder(Order)

DeletePartCommand(int, DbTransaction)

GetPartCommands(): PartCommand[*]

GetOrders(): IEnumerable<Order>

UpdateInventoryItem(int, int, DbTransaction)

GetScmContext(): IScmContext
Figure 6.1 Data-access layer
(DAL) design for SCM context

111Dapper
In figure 6.1, there are three implementations of the IScmContext interface, indi-
cated by the dotted lines. When you call the GetScmContext method, you’ll get back
an IScmContext object, and the GetScmContext method is responsible for choos-
ing which implementation class to instantiate. As a user of DataAccessFactory, you
don’t care which implementation was chosen or how that implementation works.
Because all your code uses IScmContext, DataAccessFactory can create a
SqliteScmContext object for unit testing and a SqlServerScmContext object for
production.

 The following listing shows the contents of the DataAccessFactory class.

using Scm.Dal.SQLite;
using Scm.Dal.SqlServer;
using Scm.Dal.PostgreSql;

enum DatabaseType {
 Sqlite,
 SqlServer,
 PostgreSql
}

static class DataAccessFactory
{
 internal static string ConnectionString {get; set;}
 internal static IScmContext GetScmContext(
 DatabaseType dbType)
 {
 switch (dbType)
 {
 case DatabaseType.Sqlite:
 return new SqliteScmContext(ConnectionString);
 case DatabaseType.SqlServer:
 return new SqlServerScmContext(ConnectionString);
 case DatabaseType.PostgreSql:
 return new PostgreSqlScmContext(ConnectionString);
 default:
 throw new ArgumentException(
 $"Unrecognized Database type {dbType}", "dbType");
 }
 }
}

DataAccessFactory uses the factory design pattern, which allows you to create a
new object that implements an interface without knowing the specific implementa-
tion type. The factory design pattern solves the problem of determining which imple-
mentation object to create, but it introduces an interesting set of other problems. One
is that the factory class must know all the implementations of a given interface. Also,
adding new interfaces to the factory means adding new methods. Developers using
the DataAccessFactory NuGet package will find it odd that they have to download

Listing 6.6 Implementation of DataAccessFactory

Tightly coupled to all
implementations

Enumerates all
supported databases

Caller must set connection
string before calling
GetScmContext

Caller must know what
database they want

112 CHAPTER 6 Simplify data access with object-relational mappers
the Oracle implementation even though they’re using SQL Server. Also, in order to
add support for a new database, you’d have to publish a new version of the package.

If you want to overcome these limitations and separate the IScmContext implemen-
tations into different packages, then the factory pattern won’t be suitable for your
needs. A better way to handle this situation is to use dependency injection.

6.1.4 A brief introduction to dependency injection

Dependency injection (DI) is a design principle for creating objects. When you create a
new object, A, it may rely on another object, B, to perform its functions. Instead of A
controlling the creation of B, it allows the host or creator of A to supply an object, B.
Thus, the inversion of control.

 The factory pattern is also a design principle for creating objects. To understand
why the DI pattern is superior to the factory pattern, let’s explore the factory pattern
in more depth. A factory has a clearly defined set of methods that return objects that
implement a given interface. The implementation can be chosen in many ways,
including with configuration and method parameters—allowing the host to indicate
which implementation to use. DataAccessFactory from listing 6.6 is a typical imple-
mentation of a factory.

 The advantage of the factory pattern is that you can let the host choose which imple-
mentation of IScmContext to use. An xUnit test can choose SQLite, and your produc-
tion website can choose PostgreSQL. The disadvantage is that you have to include all

Design patterns
For many common problems in software development, you’ll find libraries with solu-
tions ready to use. For instance, if you want to parse arguments from the command
line, you’ll find a range of packages to help you. Standardizing on a single package
within a team means that you don’t have five different ways of reading command-line
arguments to maintain and learn.

There are also problems commonly encountered when writing software that can’t be
solved by external libraries. These problems have been solved before, so it’s not nec-
essary to come up with a new, clever solution. By choosing from a well-known set of
design patterns, you not only save time in development, but you also have a standard
language you can use to communicate with other developers.

In our example, the common problem is that you want your data-access code to cre-
ate a context class for the database without tying yourself to a particular implemen-
tation. The factory design pattern solves this problem by exposing a method that
returns an object that implements your interface (or inherits from our base class).
This encapsulates the code for creating the object, which may be complex, reducing
duplicate code and allowing you to handle information that’s not important to the call-
ing code (like the connection string). Also, seeing “factory” in the name of a class will
clue other developers to the use of the factory pattern, making it easier for them to
understand how the code works.

113Dapper
implementations in your list of dependencies. Adding a new implementation, like
MySql, would mean another dependency and a modification to the factory class.

 The new operator creates the tight coupling. If you could remove that, you could
pass in the Type object for the implementation. The following listing shows how you
could modify the factory class to remove the new operator.

using System;
using System.Linq;
using System.Reflection;

static class DataAccessFactory {
 internal static Type scmContextType = null;
 internal static Type ScmContextType {
 get { return scmContextType; }
 set {
 if (!value.GetTypeInfo().ImplementedInterfaces.
 Contains(typeof(IScmContext))) {
 throw new ArgumentException(
 $"{value.GetTypeInfo().FullName} doesn't implement IScmContext");
 }
 scmContextType = value;
 }
 }
 internal static IScmContext GetScmContext() {
 if (scmContextType == null) {
 throw new ArgumentNullException("ScmContextType not set");
 }
 return Activator.CreateInstance(scmContextType)
 as IScmContext;
 }
}

In listing 6.7, you’ve removed the tight coupling by requiring that the host pass in the
implementation type. This code uses the Type object, but there are many other ways
of using reflection to get the type. Instead of holding the dependencies in the factory,
the host is injecting the dependency—hence the “dependency injection” name of this
pattern.

 One problem with listing 6.7 is that you don’t pass in the connection string for
types that need it. This code assumes there’s a default constructor, which isn’t a safe
assumption. The way to solve this problem is to require the host to create the imple-
mentation object, as follows.

using System.Collections.Generics;

static class DataAccessFactory
{

Listing 6.7 Factory modified to use Type object

Listing 6.8 Factory modified to make the host supply the implementation object

Host must set the
implementation type before
calling GetScmContext

Checks that the type actually
implements IScmContext

An alternative to new
that creates an object
of the passed-in Typeas is similar

to a typecast.

114 CHAPTER 6 Simplify data access with object-relational mappers
 internal static Dictionary<Type, object> implementations =
 new Dictionary<Type, object>();

 internal static void AddImplementation<T>(T t) where T : class {
 implementations.Add(typeof(T), t);
 }
 internal static T GetImplementation<T>() where T : class {
 return implementations[typeof(T)] as T;
 }
}

Let’s unpack listing 6.8 by first looking at the Dictionary. It maps types to objects—
this factory class is really only a wrapper around the Dictionary. The Add-
Implementation method uses C# generics to check that the object passed in the
parameter implements or is a child type of the generic parameter, T. There’s also a con-
straint (where T : class) to make sure nobody tries to use a value type or struct.

MAKE A GENERAL-PURPOSE FACTORY You don’t add the generic constraint where
T : IScmContext. That would mean that you could only use this class for IScm-
Context types, and only one implementation is needed for the application.
Removing the constraint makes this more general-purpose, which means it
should probably be called something other than DataAccessFactory.

To use this factory, a host, H, that uses a class, A, will create the implementation object,
B, for IScmContext and add it to the DataAccessFactory. When A needs to use
object B, it gets it from DataAccessFactory.

 You’ve now modified your factory to the point where it’s no longer a factory. It
instead fits the DI (or inversion of control) pattern. The host is responsible for creat-
ing the implementation object, so it will provide the connection string if needed.

 Removing the tight coupling is the biggest advantage of DI. The pattern also
makes the inversion of control easy enough that you can use it in other places and
thereby make your code easier to unit test.

6.1.5 Dependency injection in .NET Core

There are many DI libraries to choose from when writing .NET Framework applica-
tions, and some of those libraries will certainly port to .NET Standard to expand their
platform reach. The ASP.NET Core team couldn’t wait that long and built their own
DI library. You’ll use that DI library to build your data-access layer.

 Figure 6.2 shows how the classes and packages lay out if you move from the factory
pattern to the DI pattern. Each implementation of IScmContext is separated into its
own package that’s included only if the host decides to use it.

 You’re going to implement your data-access layer using DI. Use the following com-
mands to set up a new set of projects:

cd ..
mkdir DapperDi
cd DapperDi
dotnet new classlib -o ScmDataAccess
dotnet new classlib -o SqliteDal
dotnet new xunit -o SqliteScmTest

115Dapper
Figure 6.2 Data-access layer for SCM context using DI instead of the factory pattern

The ScmDataAccess and SqliteDal folders will have Class1.cs files in them. They won’t
cause any harm, but you don’t need them, so feel free to remove them. In ScmDataAc-
cess, copy the InventoryItem.cs, Order.cs, PartCommand.cs, PartType.cs, SendEmail-
Command.cs, and Supplier.cs files from the previous examples. You’ll need to change
the namespace from WidgetScmDataAccess to ScmDataAccess because you’re turning
this into a product rather than a custom solution for Widget Corp.

 Add a new file to ScmDataAccess called IScmContext.cs with the contents from the
following listing.

using System.Collections.Generic;
using System.Data.Common;

namespace ScmDataAccess
{
 public interface IScmContext
 {
 IEnumerable<PartType> Parts { get; }
 IEnumerable<InventoryItem> Inventory { get; }
 IEnumerable<Supplier> Suppliers { get; }

Listing 6.9 Contents of the IScmContext interface

SqliteScmContext

<<Interface>>
IScmContext

Inventory: InventoryItem

Parts: PartType

Suppliers: Supplier

BeginTransaction(): DbTransaction

CreateOrder(Order)

DeletePartCommand(int, DbTransaction)

GetPartCommands(): PartCommand[*]

GetOrders(): IEnumerable<Order>

UpdateInventoryItem(int, int, DbTransaction)

SqliteDal

SqlServerScmContext

SqlServerDal

PostgreScmContext

PostgreDal

116 CHAPTER 6 Simplify data access with object-relational mappers
 PartCommand[] GetPartCommands();
 void DeletePartCommand(int id, DbTransaction transaction);
 void UpdateInventoryItem(int partTypeId, int count,
 DbTransaction transaction);
 void CreateOrder(Order order);
 DbTransaction BeginTransaction();
 IEnumerable<Order> GetOrders();
 }
}

BE MINDFUL THAT ENUMERABLES PROVIDE DATA AS SOON AS IT’S AVAILABLE You
used GetPartCommands in chapter 5, but I didn’t point out that it returns an
array of PartCommand objects. By contrast, GetOrders returns an
IEnumerable<Order>. The reason for this difference is that you’re deleting
the rows from the PartCommand table as you iterate through the list. You want
the full list before you do that so that deleting the rows doesn’t interfere with
any locks taken during the read of the PartCommand table. IEnumerable
collections can start providing objects before all of them are read. It should be
clear from the API signature that all PartCommand objects are read into mem-
ory, and you do that by specifying the array.

Modify the ScmDataAccess.csproj file as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.2</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="System.Data.Common"
 Version="4.3.0" />
 </ItemGroup>

</Project>

Now build the SqliteDal project. Change SqliteDal.csproj as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.3</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Data.Sqlite"
 Version="1.1.0" />
 <PackageReference Include="Dapper"

Listing 6.10 ScmDataAccess.csproj contents

Listing 6.11 SqliteDal.csproj contents

Array instead
of IEnumerable

.NET Standard 1.2 is
required for
System.Data.Common.

Uses .NET Standard
1.3 because you’re
using Dapper

117Dapper
 Version="1.50.2" />
 <ProjectReference Include="../ScmDataAccess/ScmDataAccess.csproj" />
 </ItemGroup>

</Project>

Create a file called SqliteScmContext.cs. This class will be the implementation of the
IScmContext interface for the Sqlite database. Implement it as follows.

using System;
using System.Collections.Generic;
using System.Data.Common;
using System.Linq;
using Dapper;
using Microsoft.Data.Sqlite;
using ScmDataAccess;

namespace SqliteDal {
 public class SqliteScmContext : IScmContext {
 private SqliteConnection connection;
 public IEnumerable<PartType> Parts { get; private set; }
 public IEnumerable<InventoryItem> Inventory { get; private set; }
 public IEnumerable<Supplier> Suppliers { get; private set; }

 public SqliteScmContext(SqliteConnection conn) {
 connection = conn;
 conn.Open();
 Parts = conn.Query<PartType>("SELECT * FROM PartType");
 Inventory = conn.Query<InventoryItem>("SELECT * FROM InventoryItem");
 foreach (var item in Inventory)
 item.Part = Parts.Single(p => p.Id == item.PartTypeId);
 Suppliers = conn.Query<Supplier>("SELECT * FROM Supplier");
 foreach (var supplier in Suppliers)
 supplier.Part = Parts.Single(p => p.Id == supplier.PartTypeId);
 }

 public PartCommand[] GetPartCommands() {
 return connection.Query<PartCommand>("SELECT * FROM PartCommand")
 .ToArray();
 }

 public void DeletePartCommand(int id, DbTransaction transaction) {
 connection.Execute(@"DELETE FROM PartCommands
 WHERE Id=@Id", new { Id = id }, transaction);
 }

 public void UpdateInventoryItem(int partTypeId, int count,
 DbTransaction transaction) {
 connection.Execute(@"UPDATE InventoryItem
 SET Count=@Count
 WHERE PartTypeId=@PartTypeId",
 new { Count = count, PartTypeId = partTypeId},

Listing 6.12 SqliteScmContext class—a SQLite implementation of IScmContext

There can be multiple
instances of SQLite

in memory.

Open can safely be
called multiple times.

ToArray reads all the values from
the IEnumerable into an array.

Uses an anonymous type
for the Id parameter

118 CHAPTER 6 Simplify data access with object-relational mappers
 transaction);
 }

 public void CreateOrder(Order order) {
 var transaction = connection.BeginTransaction();
 try {
 order.Id = connection.Query<int>(
 @"INSERT INTO [Order]
 (SupplierId, PartTypeId, PartCount,
 PlacedDate) VALUES (@SupplierId,
 @PartTypeId, @PartCount, @PlacedDate);
 SELECT last_insert_rowid();", order,
 transaction).First();

 connection.Execute(@"INSERT INTO SendEmailCommand
 ([To], Subject, Body) VALUES
 (@To, @Subject, @Body)", new {
 To = order.Supplier.Email,
 Subject = $"Order #{order.Id} for {order.Part.Name}",
 Body = $"Please send {order.PartCount}" +
 $" items of {order.Part.Name} to Widget Corp"
 }, transaction);

 transaction.Commit();
 }
 catch {
 transaction.Rollback();
 throw;
 }
 }

 public DbTransaction BeginTransaction() {
 return connection.BeginTransaction();
 }

 public IEnumerable<Order> GetOrders() {
 var orders = connection.Query<Order>("SELECT * FROM [Order]");
 foreach (var order in orders) {
 order.Part = Parts.Single(p => p.Id == order.PartTypeId);
 order.Supplier = Suppliers.Single(s => s.Id == order.SupplierId);
 }

 return orders;
 }
 }
}

USE YIELD RETURN TO START PROCESSING DATA SOONER The GetOrders
method uses foreach to supply the values for the Part and Supplier prop-
erties. Because foreach enumerates through all the Order objects, the
entire result set from the SQL query has to be read. This can be a perfor-
mance issue if there are a lot of orders. Instead of return orders at the
end, you could put a yield return order inside the foreach loop to
return the Order objects to the caller one at a time.

Same CreateOrder
method from earlier

foreach will get all Order
objects in the IEnumerable,

just like ToArray.

119Dapper
Now test this code out. The test project, SqliteScmTest, is going to act as the host.
You’ll use DI to mark SqliteScmContext as the implementation for IScmContext.
The following listing shows how to add the DI libraries to SqliteScmTest.csproj.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
 <PackageReference Include="Microsoft.Data.Sqlite"
 Version="1.1.0" />
 <PackageReference
 Include="Microsoft.Extensions.DependencyInjection.Abstractions"
 Version="2.0.0" />
 <PackageReference
 Include="Microsoft.Extensions.DependencyInjection"
 Version="2.0.0" />
 <ProjectReference Include="../SqliteDal/SqliteDal.csproj" />
 </ItemGroup>

</Project>

As in the previous examples, you’ll create a class fixture for your xUnit tests. The fix-
ture is also responsible for initializing the DI settings. The full code is available online,
but the important bits are shown in the next listing.

using System;
using Microsoft.Data.Sqlite;
using Microsoft.Extensions.DependencyInjection;
using ScmDataAccess;
using SqliteDal;

namespace SqliteScmTest
{
 public class SampleScmDataFixture
 {
 private const string PartTypeTable =
 @"CREATE TABLE PartType(
 Id INTEGER PRIMARY KEY,
 Name VARCHAR(255) NOT NULL
);";

 public IServiceProvider Services
 { get; private set; }

Listing 6.13 Adding DI to SqliteScmTest.csproj

Listing 6.14 SampleScmDataFixture class using DI

Abstract
types
for DI Implementation

of DI abstractions

IServiceProvider is in
the System namespace
and not specific to DI.

Include both
namespaces.

The rest of the table-creation
statements are available online.

This is how you’ll
expose DI to the tests.

120 CHAPTER 6 Simplify data access with object-relational mappers
 public SampleScmDataFixture()
 {
 var conn = new SqliteConnection(
 "Data Source=:memory:");
 conn.Open();
 (new SqliteCommand(PartTypeTable, conn)).ExecuteNonQuery();

 var serviceCollection = new ServiceCollection();
 IScmContext context = new SqliteScmContext(conn);
 serviceCollection.AddSingleton<IScmContext>(
 context);
 Services = serviceCollection.BuildServiceProvider();
 }
 }
}

In listing 6.14 you’re using a singleton SqliteScmContext object. Singleton means
that every time you use the Services property to get an implementation of IScm-
Context, you’ll get the same instance.

 Each SqliteConnection creates its own in-memory database, so if you want to
share that database between tests, you’ll use a singleton. But what if you don’t want one
test’s changes to the database to interfere with another test? xUnit runs the tests in par-
allel and in random order, so it could cause problems if you’re expecting a test to be
anything other than atomic. In this case, you can have a new SqliteScmContext
object created every time. The following listing shows how to rewrite the constructor of
SampleScmDataFixture to use transient objects instead of a singleton.

public SampleScmDataFixture()
{
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddTransient<IScmContext>(
 provider => {
 var conn = new SqliteConnection("Data Source=:memory:");
 conn.Open();
 (new SqliteCommand(PartTypeTable, conn)).ExecuteNonQuery();
 return new SqliteScmContext(conn);
 });
 Services = serviceCollection.BuildServiceProvider();
}

In listing 6.14 you created a new SqliteScmContext object and called the Add-
Singleton method on the ServiceCollection. When you retrieved the IScm-
Context implementation later, you got that object back.

 With the AddTransient method in listing 6.15, you need to create a new
SqliteScmContext object every time it’s retrieved. The only way to do that is to
invoke a method you provide, and to do that you use an anonymous delegate.

Listing 6.15 Creating transient objects instead of using a singleton

Connection string specifies
an in-memory database

The rest of the table-creation
code is available online.

Creates a singleton
instance of
SqliteScmContext to
implement IScmContext

Transient objects need to
be created when asked
for, hence the delegate.

121Dapper
 You’re now all set to create a test and try it out. Modify the UnitTest1.cs file as
follows.

using System;
using System.Linq;
using ScmDataAccess;
using Microsoft.Extensions.DependencyInjection;
using Xunit;

namespace SqliteScmTest
{
 public class UnitTest1 : IClassFixture<SampleScmDataFixture>
 {
 private SampleScmDataFixture fixture;
 private IScmContext context;

 public UnitTest1(SampleScmDataFixture fixture)
 {
 this.fixture = fixture;
 this.context = fixture.Services.
 GetRequiredService<IScmContext>();
 }

 [Fact]
 public void Test1()
 {
 var orders = context.GetOrders();
 Assert.Equal(0, orders.Count());
 var supplier = context.Suppliers.First();
 var part = context.Parts.First();
 var order = new Order() {
 SupplierId = supplier.Id,
 Supplier = supplier,
 PartTypeId = part.Id,
 Part = part,
 PartCount = 10,
 PlacedDate = DateTime.Now
 };
 context.CreateOrder(order);
 Assert.NotEqual(0, order.Id);
 orders = context.GetOrders();
 Assert.Equal(1, orders.Count());
 }
 }
}

BE MINDFUL OF USING SINGLETONS IN UNIT TESTS The constructor doesn’t
change, regardless of whether the host has set a singleton or a transient for
the implementation of IScmContext. You simply ask for the implementa-
tion, and it uses whatever was specified by the host to get the object. However,

Listing 6.16 Test SCM data-access layer using Dapper, SQLite, and DI

This namespace is part
of the Abstractions
dependency.

Extension of
IServiceProvider in the
Abstractions dependency

Verifies that there
are no orders

Creates
an order

Verifies that the
order was created

122 CHAPTER 6 Simplify data access with object-relational mappers
Test1 would need to change to support singletons, because it expects the
order count to be 0 initially, and 1 after the order is created. If another test
created an order, and you were using a singleton SqliteScmContext, this
test would fail. Because xUnit randomizes the test order, this might not hap-
pen all the time.

USING THE MICROSOFT DI LIBRARY WITHOUT ADDING A DEPENDENCY ON IT
Your business-logic code depends on some implementation of IScmContext, but it
doesn’t take a dependency on any particular implementation because it’s using DI.
This is nice, because you don’t need to add a project or package reference to the
SQLite or SQL Server libraries. Instead, you added a reference to the Microsoft.Exten-
sions.DependencyInjection.Abstractions package. But it turns out you don’t have to
do that either.

 You only add the dependency to the Abstractions library because you’re using the
GetRequiredService extension method. If you rewrite the code as follows, you can
remove the reference to the Abstractions library.

public void InitWithDi(IServiceProvider services)
{
 this.context = services.
 GetRequiredService<IScmContext>();
}

public void InitWithoutDi(IServiceProvider services)
{
 this.context = services.
 GetService(typeof(IScmContext)) as IScmContext;
}

IServiceProvider is used in .NET for all kinds of things, not just DI, and it’s
included in .NET Core. You only want to use one DI library in your application’s code,
so if you’re publishing a NuGet package, other developers will appreciate that your
library doesn’t depend on any particular DI implementation.

 Note that there are some advanced features of the Microsoft Extensions DI library
that may not work with IServiceProvider. But for this simple example, it will work
for both singleton and transient.

6.1.6 Configuring the application

Until now, you’ve only used in-memory databases with SQLite. That has allowed you to
get away with hard-coding the connection string to Data Source=:memory:. But
real applications have different connection strings based on the environment in
which they’re deployed, so hard-coding isn’t an option. You’ll need a way to configure
the connection string.

Listing 6.17 Changing the GetRequiredService extension method call to an
 equivalent

Uses extension
method from DI
abstractions package

Uses built-in methods
on IServiceProvider

123Dapper

C

XML CONFIGURATION IN .NET .NET Framework developers are familiar with
XML configuration via the app.config file. When built, it has the same name
as the executable, but appended with .config. App.config has a special section
for connection strings, which are retrieved in code using the System.Configu-
ration library. .NET Core doesn’t have XML configuration built in, as of the
writing of this book (but it may be added in later versions). This means .NET
Core applications need to provide their own configuration.

To handle configuration in .NET Core, you’ll again turn to the Microsoft.Exten-
sions libraries. Modify the SqliteScmTest.csproj file as shown in the following listing
to add references to the Microsoft.Extensions.Configuration packages.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
 <PackageReference Include="Microsoft.Data.Sqlite" Version="2.0.0" />
 <PackageReference
 Include="Microsoft.Extensions.DependencyInjection.Abstractions"
 Version="2.0.0" />
 <PackageReference Include="Microsoft.Extensions.DependencyInjection"
 Version="2.0.0" />
 <PackageReference Include="Microsoft.Extensions.Configuration"
 Version="2.0.0" />
 <PackageReference Include="Microsoft.Extensions.Configuration.Json"
 Version="2.0.0" />
 <ProjectReference Include="../SqliteDal/SqliteDal.csproj" />
 <None Include="config.json">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 </ItemGroup>

</Project>

The SampleScmDataFixture class will read the configuration, because it needs the
connection string in order to create the IScmContext object. To do this, modify the
test class fixture, as follows.

using System;
using System.Collections.Generic;
using ScmDataAccess;

Listing 6.18 Add Microsoft.Extensions.Configuration reference to test
 project

Listing 6.19 SampleScmDataFixture using configuration to get the connection string

onfiguration
package

There are lots of ways to
configure; use JSON.

124 CHAPTER 6 Simplify data access with object-relational mappers

t

using Microsoft.Data.Sqlite;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.DependencyInjection.Abstractions;
using SqliteDal;

namespace SqliteScmTest
{
 public class SampleScmDataFixture
 {
 const string PostsTable = ...;

 const string ConnStrKey = "ConnectionString";
 const string DefConnStr = "Data Source=:memory:";

 static Dictionary<string, string> Config {get;} =
 new Dictionary<string, string>()
 {
 [ConnStrKey] = DefConnStr
 };

 public IServiceProvider Services { get; private set; }

 public SampleScmDataFixture()
 {
 var configBuilder = new ConfigurationBuilder();
 configBuilder
 .AddInMemoryCollection(Config)
 .AddJsonFile("config.json", true);
 var configRoot = configBuilder.Build();
 var connStr = configRoot[ConnStrKey];
 var serviceCollection = new ServiceCollection();
 serviceCollection.AddTransient<IScmContext>(provider => {
 var conn = new SqliteConnection(connStr);
 conn.Open();
 (new SqliteCommand(PartTypeTable, conn)).ExecuteNonQuery();

 return new SqliteScmContext(conn);
 });
 Services = serviceCollection.BuildServiceProvider();
 }
 }
}

To get the configuration, you start with the ConfigurationBuilder. The order in
which you add configuration sources to the builder matters. The first source added is
the last source tapped for configuration data. In this case, if a configuration value
doesn’t exist in the config.json file, it’ll check the in-memory collection. If you have
default values for configuration, it makes sense to put them in an in-memory collec-
tion and add it to the builder as the first source.

 The AddInMemoryCollection method is built into the regular configuration
package, but the AddJsonFile method is an extension method from the JSON pack-
age. There are several configuration packages, such as XML, INI, command line, and

Copy from the previous
chapter or from companion
code on GitHub

This will be your
fallback in case the
config file isn’t there.

Dictionary serves as a
key/value pair collection

Adds a key with the
name ConnectionString

This coding style is
called method chaining
or fluent interface.

Serves as the default;
last one with a value winsrue indicates

the file is
optional. Retrieves the

connection string,
given the key

The rest of the code
is available online.

125Dapper
Azure Key Vault. They all implement an extension method with the method-chaining
pattern. Method chaining is a nice way to make code cleaner. Each Add method
returns the ConfigurationBuilder object so another Add method can be applied.
It prevents you from having to write the configBuilder. on each line.

 Once all the configuration sources are applied to the builder, you call the Build
method to get an object that implements the IConfigurationRoot interface.
IConfigurationRoot inherits from IConfiguration, which has an indexer for
getting configuration values. In this case, the indexer takes the name of the configura-
tion property and returns the first value it finds when searching through the configu-
ration sources in the reverse order of how they were added.

 You put a value for the connection string in the in-memory collection, which serves
as your default value. If the configuration library can’t find the config.json file, or if the
file doesn’t contain a definition for ConnectionString, you’ll still have the default
value. That means you can execute this code without creating the config.json file.

 To test how the JSON configuration works, create a config.json file with a connec-
tion string, as shown in the next listing.

{
 "ConnectionString": "Data Source=scm.db"
}

SQLite can use a file-based database instead of an in-memory database. You wouldn’t
commonly use file-based databases with unit tests because the tests modify the data-
base, which would make testing results inconsistent from run to run. But it’s a great
way to detect whether the configuration system is finding the config.json file instead
of using the default connection string.

 You’ll need to copy this file to the build output so that the configuration library
can find it. Modify the SqliteScmTest.csproj file by adding the item group shown in
the following listing.

<ItemGroup>
 <None Include="config.json">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
</ItemGroup>

Execute the tests and check the bin/Debug/netcoreapp2.0 folder to make sure that a
file called scm.db was created. The presence of this file proves that the connection
string from the config.json file was used.

 Configuring the connection string through a separate file is necessary for deploy-
ing to different environments. You could also use configuration to specify which
implementation of IScmContext to use in your DI library. Some DI libraries allow

Listing 6.20 config.json file with the SQLite connection string

Listing 6.21 Copy the configuration file to the output folder

File-based data source

126 CHAPTER 6 Simplify data access with object-relational mappers
you to configure them through configuration files, but because there isn’t a standard
way of doing that in .NET Core, there’s no built-in support for configuration in the
Microsoft DI extensions library.

6.1.7 When to build your own data-access layer

We’ve looked at two approaches for building a custom data-access layer.
 The first was to use the barebones approach of executing queries by supplying

parameters and reading the results into objects manually. This may be a useful tech-
nique in certain circumstances, such as for object-mapping rules that are too compli-
cated for an ORM library, or for high-performance applications.

 The second approach was to use a micro-ORM to do the tedious work. This allows
you to be more productive while not sacrificing much performance. You still need to
know SQL, though, and the potential for SQL injection attacks is still there, because
you’re writing SQL statements to a string. But you spend less time writing boilerplate
code to transfer data between objects and database entities.

 Both of these methods require significant design work. Different databases use dif-
ferent flavors of SQL, so it helps to have DI. You also need to be able to unit test your
code. The code should also support configuration so that it can be easily and securely
configured in all environments.

 Many of the applications I’ve worked on haven’t needed custom data-access layers.
The SQL queries themselves always took more time than the ORM code. In those
cases, it was more important to make developers more productive than to squeeze per-
formance out of the code. But the more code you write, the more you need to main-
tain. This is why I often turn to full ORM libraries like Entity Framework.

Where to learn more about configuration
The Microsoft.Extensions.Configuration library has lots of options and
makes it easy to chain in implementations. In this chapter, we only looked at JSON
and in-memory objects. If you search on nuget.org, you’ll find an array of other
options, such as XML, INI files, Docker secrets, Azure Key Vault, and various key/
value stores. I’m also a big fan of the command-line arguments and environment-vari-
able implementations, because instead of giving special attention to these methods,
you can treat them like any other configuration.

This book doesn’t delve deeply into all the possibilities for using the Microsoft
.Extensions.Configuration library. It’s an important enough subject that I
considered writing an appendix for it, but there’s already a really comprehensive arti-
cle on configuration online, titled “Configure an ASP.NET Core App,” at http://
mng.bz/3G45. It’s geared toward ASP.NET Core, but it still applies universally and it
covers many of the configuration providers.

http://mng.bz/3G45
http://mng.bz/3G45

127Entity Framework Core
6.2 Entity Framework Core
Alongside ASP.NET Core, Microsoft is building Entity Framework (EF) Core. EF Core
is a .NET Core version of Entity Framework, which is a full ORM built by Microsoft for
the .NET Framework. Instead of porting EF from the .NET Framework, the team
decided to rewrite most of EF—much like how ASP.NET Core is a rewrite of ASP.NET.
You’ll explore EF briefly by using it to rewrite your supply-chain management data-
access layer.

 You can start by creating the projects using the following commands. You’ll create
the ScmDataAccess project as before, but you won’t need a project for implementing
each type of database. You’ll include an xUnit test project called ScmDalTest to make
sure everything’s working:

cd ..
mkdir EfTest
cd EfTest
dotnet new classlib -o EfScmDataAccess
dotnet new xunit -o EfScmDalTest

The PartType class remains the same, but the InventoryItem and Supplier
classes will be slightly different for EF. The changes are shown in listings 6.22 and 6.23.

namespace EfScmDataAccess
{
 public class InventoryItem
 {
 public int Id { get;set; }
 public PartType Part { get; set; }
 public int Count { get; set; }
 public int OrderThreshold { get; set; }
 }
}

namespace EfScmDataAccess
{
 public class Supplier
 {
 public int Id { get; set; }
 public string Name { get;set; }
 public string Email { get; set; }
 public PartType Part { get; set; }
 }
}

Just like with Dapper, EF uses conventions so your code can look cleaner. Both can also
work with custom attributes if you need to specify certain behaviors. As a micro-ORM,

Listing 6.22 InventoryItem.cs modified for use with EF

Listing 6.23 Supplier.cs modified for use with EF

InventoryItem needs its
own identity column.

No PartTypeId; EF will
get the Part for you.

No PartTypeId; EF will
get the Part for you.

128 CHAPTER 6 Simplify data access with object-relational mappers
Dapper doesn’t know about the relationships between objects. This is where a full
ORM, like EF, differentiates itself.

 In listings 6.22 and 6.23, you add a PartType object. EF interprets this as a one-to-
one relationship between an InventoryItem or Supplier object and a PartType
object. It also understands that there are foreign keys between the associated tables.
Two of the conventions EF uses are <otherclassname><idproperty>, indicating a
relationship, and the Id or <classname>Id property, indicating an identity.

 Now, let’s take a look at the EfScmContext class in the next listing.

using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;

namespace EfScmDataAccess
{
 public class EfScmContext : DbContext
 {
 public DbSet<PartType> Parts { get; set; }
 public DbSet<InventoryItem> Inventory { get; set; }
 public DbSet<Supplier> Suppliers { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)

 {
 optionsBuilder.UseSqlite("Filename=efscm.db");
 }
 }
}

That’s basically all you need to do for the data-access code. EF generates the SQL com-
mands necessary to perform the create, retrieve, update, and delete operations that you
want. These operations are all available on the DbSet class, which we’ll look into later.

 Now you have to create the database schema, and EF can generate it for you. It
doesn’t do this when your application starts up, though. Instead, you need to use EF’s
.NET CLI migration tool to apply the schema to the database. This also means that if
you want EF to create the database schema, you can’t use an in-memory Sqlite data-
base. .NET CLI tools are pulled in as dependencies.

 To use the EF migration tool, the first step is to modify the EfScmDataAccess.csproj
file.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

Listing 6.24 EfScmContext—ScmContext modified for use with EF

Listing 6.25 EfScmDataAccess.csproj modified for EF and EF migration tool

Must inherit
from DbContext

DbSet is a collection
provided by EF.

Using SQLite with
a file-based database

Custom tools require
netcoreapp instead
of netstandard.

129Entity Framework Core

th
 <ItemGroup>
 <PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="2.0.0" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"
 Version="2.0.0" />
 <DotNetCliToolReference
 Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>
</Project>

6.2.1 Using EF migrations to create the database

EF has a custom tool to generate something called a migration, which is essentially a
means of migrating your database from one version to the next. In our example, the
database has no tables to start out with. The EF migration will create tables to match
your model. If you were to build a new version of the code where you made changes to
the model, another migration step would be added to migrate an existing database to
the new schema. EF keeps track of all the migrations, so it can migrate a database
from any previous version (or from scratch) to the latest version. In some cases, there
are data changes as well as schema changes. EF cleverly keeps track of all that.

UPDATE MIGRATIONS DON’T WORK ON SQLITE Migrations for SQLite only work to
create the database. They won’t update an existing database to a new version.

CLI TOOLS ONLY WORK ON CONSOLE APPLICATIONS One of the issues with custom
tools in the .NET CLI is that they can only be used on console applications.
You don’t want your data-access layer to be a console application, so you’re
using a workaround where EfScmDalTest stands in as the console application.

In order to get your migration tool to work, you’ll need to modify the EfScmDalTest
unit test project. The following listing shows the modified project file.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

Custom tools in the .NET CLI
The .NET CLI is designed for extensibility. Partly that’s to allow custom tools. These
tools aren’t accessible from the code in the project; instead, they’re intended for use
during the build. For example, you may wish to obfuscate your JavaScript code as part
of the build process for your ASP.NET web application. That can be done with a cus-
tom tool.

Listing 6.26 EfScmDalTest.csproj file modified to support the EF migration tool

EF’s library includes
everything for using SQLite.

Needed for
e EF CLI tool

The .NET CLI
tool reference

130 CHAPTER 6 Simplify data access with object-relational mappers
 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"
 Version="2.0.0" />
 <PackageReference Include="System.Runtime.Serialization.Primitives"
 Version="4.3.0" />
 <ProjectReference Include="../EfScmDataAccess/EfScmDataAccess.csproj" />
 </ItemGroup>

 <ItemGroup>
 <None Include="efscm.db"
 Condition="Exists('efscm.db')">
 <CopyToOutputDirectory>Always</CopyToOutputDirectory>
 </None>
 </ItemGroup>
</Project>

After you’ve run the dotnet build command on both projects, you can use the EF
migration tool. Change to the EfScmDataAccess folder and execute the following
command:

dotnet ef --startup-project ../EfScmDalTest migrations add EfScmMigration

This creates a Migrations folder in the project with a set of C# files in it. This is the
code generated by EF to perform the migration.

 Now all you need to do is test this code out.

6.2.2 Running the tests using EF

Before you can execute the tests, you’ll need to create the database. This is done using
the same EF migration tool you used earlier. From the EfScmDataAccess folder, exe-
cute the following command to create the SQLite file-based database:

dotnet ef --startup-project ../EfScmDalTest database update

The tool creates the efscm.db file in the EfScmDalTest folder with the schema gener-
ated from the classes in the EfScmDataAccess project. When you build the EfScm-
DalTest project, this database file is copied to the build output.

 Now test out this database by going back to the EfScmDalTest project and editing
UnitTest1.cs as follows.

using System;
using System.Linq;
using Xunit;
using EfScmDataAccess;

namespace EfScmDalTest
{

Listing 6.27 Test exercising some EF functionality

Needed to ensure
the correct version
of EF is referenced

Copies database file to
output folder for testing

Only copies if
the file exists

131Entity Framework Core

n

 public class UnitTest1
 {
 [Fact]
 public void Test1()
 {
 using (var ctxt = new EfScmContext())
 {
 var partName = "Sample" +
 DateTime.Now.ToString("HHmmss");
 var part = new PartType() {
 Name = partName
 };
 ctxt.Parts.Add(part);
 ctxt.SaveChanges();

 var getPart = ctxt.Parts.Single(
 p => p.Name == partName);
 Assert.Equal(getPart.Name, part.Name);

 ctxt.Parts.Remove(getPart);
 ctxt.SaveChanges();

 getPart = ctxt.Parts.FirstOrDefault(
 p => p.Name == partName);
 Assert.Null(getPart);
 }
 }
 }
}

In our example, the EfScmContext object has the connection to the SQLite database
written in its constructor, but EF has plenty of other ways to construct the context and
connect it to a database. When using EF, you don’t have to build a custom data-access
layer with DI. The configuration extension library may be helpful, though.

 DbSet operates much like a collection. When getting values from DbSet, your
LINQ queries will be interpreted into SQL statements by EF. So just because you have
thousands of parts in your inventory, doesn’t mean thousands of PartType objects
will be held in memory. EF keeps track of the objects you retrieve in the context. If
you make a change to an object and save it to DbSet, EF detects the change you made
and generates the SQL UPDATE statement.

Understanding the LINQ queries
There are two LINQ queries used in listing 6.27, and they both use the same anony-
mous delegate: p => p.Name == partName. Translated to English, this means
“for a given PartType object, p, return true if the Name property is equal to the
partName variable; otherwise return false.” The Single extension method enu-
merates through all the parts in DbSet and makes sure that exactly one of them gets
the true return value. If that’s the case, it returns that one PartType object. Oth-
erwise, it throws an exception. FirstOrDefault just returns the first part that
matches the part name, or null if it doesn’t find anything.

Context maintains
database connections

Makes a unique part name so the
unit test can be run multiple times

Creates a
ew PartType

object Adds the part
to the DbSet Commits the new

PartType to the database

EF translates LINQ queries
to SQL queries for you.

Deleting data is as simple
as creating data.

Checks that the part
is no longer there

132 CHAPTER 6 Simplify data access with object-relational mappers
 EF handles a lot of the work of communicating with a database—it has many pro-
viders to work with all kinds of databases. But regardless of the database you connect
to, the code remains the same. Developers write queries using LINQ instead of SQL.
For many applications, this can significantly boost productivity over writing a custom
data-access layer.

Additional resources
To learn more about what we covered in this chapter, try the following resources:

 Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Rich-
ard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley Professional,
1994)

 Dependency Injection in .NET, second edition, by Steven van Deursen and Mark
Seemann (Manning, 2018)—http://mng.bz/xSnW

 Entity Framework Core in Action by Jon P Smith (Manning, 2018)—http://
mng.bz/cOH4

 Microsoft’s Entity Framework documentation—http://docs.efproject.net
 Configuration in ASP.NET Core—http://mng.bz/30T8

EF RESOURCES FOR .NET FRAMEWORK APPLY IN MOST CASES Although there are
differences between the Framework and Core versions of Entity Framework,
documentation on EF for the .NET Framework should have plenty of useful
information.

Summary
In this chapter you learned about the Dapper and Entity Framework object-relational
mapping libraries available in .NET Core. We covered these key concepts:

 Eliminating most boilerplate object-table mapping code with an ORM
 Using dependency injection to separate different data-access implementations
 Applying many kinds of configuration to .NET Core applications with exten-

sions libraries for .NET Standard
 Executing custom tools with the .NET CLI

Here are some important techniques to remember from this chapter:

 The Microsoft.Extensions family has lots of useful libraries built on the .NET
Standard.

 Micro-ORMs like Dapper can increase productivity without sacrificing
performance.

 There are many options for configuration in .NET Core applications, including
fallbacks.

 Some libraries, like Entity Framework, come with custom tools that can be used
from the .NET CLI.

http://mng.bz/xSnW
http://mng.bz/cOH4
http://mng.bz/cOH4
http://docs.efproject.net
http://mng.bz/30T8

133Summary
 In order to use custom tools on a library, specify another project with an entry
point (like an xUnit test project) when running the tool.

ORM libraries increase developer productivity in many cases. Choosing an ORM
depends on many factors, and we covered two different types in this chapter. There
are a lot of data-access libraries out there, and many of them should make their way to
.NET Standard in the future. You also learned about some useful stuff in the Micro-
soft.Extensions family of libraries, such as configuration and dependency injection.
Other extensions libraries will be used later in the book.

 Although relational data is important for many applications, not all data is in rela-
tional stores. In the next chapter we’ll cover how to get data from other services over a
network.

Creating a microservice
My personal blog is written in .NET Core (http://mode19.net). Originally I wrote
each post in its own page. Those pages were all part of the source code of the blog
and had corresponding metadata in a database. But as the number of posts
increased, the site became hard to manage, especially since the older pages were
written using older libraries and techniques. The contents of the blog posts didn’t
change—only the formatting changed.

 That’s when I decided to convert my blog posts to Markdown. Markdown allows
me to write just the content of the blog post without having to worry about the for-
matting. That way, I could store my blog posts in a database or BLOB storage and
not have to rebuild the web application every time I posted a new entry. I could also
convert every page on the blog to use the latest libraries I wanted to try out, without
touching the posts’ content.

This chapter covers
 Writing web services with ASP.NET Core

 Making HTTP requests to web services

 Introduction to creating microservices
134

http://mode19.net

135Writing an ASP.NET web service
 To handle the storing of posts and conversion from Markdown to HTML, I created
a microservice. To describe what a microservice is, I’ll borrow some of the characteris-
tics listed in Christian Horsdal Gammelgaard’s book Microservices in .NET Core (Man-
ning, 2017). A microservice is

 Responsible for a single piece of functionality (blog posts)
 Individually deployable (separate from a blog web app)
 Singularly responsible for its datastore (creates, updates, and deletes posts in

Azure Blob Storage)
 Replaceable (another service can replace it as long as it implements the same

interface)

In this chapter, you’ll create a blog post microservice. The data store will be Azure
Blob Storage. I picked Azure Blob Storage because it presents a challenge in that
HTTP requests made to it need special headers and security information. There’s sup-
port for Azure Blob Storage in the Azure SDK, which is available for .NET Standard.
But as an exercise, you’ll make the HTTP requests directly.

7.1 Writing an ASP.NET web service
In chapter 2 you used the dotnet new web template. That template is tuned more
for websites than web services. You’ll start with that template and make the necessary
adjustments to turn it into a web service-only project.

 But before you begin, let’s find something interesting for your service to do.

7.1.1 Converting Markdown to HTML

There are many implementations of Markdown, and several are available in .NET
Core or .NET Standard. The library you’ll be using is called Markdown Lite.

 You can see how it works by creating an empty web application. Create a new folder
called MarkdownLiteTest and run the dotnet new console command in it. Add a ref-
erence to Microsoft.DocAsCode.MarkdownLite in the project file, as follows.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.DocAsCode.MarkdownLite"
 Version="2.13.1" />
 </ItemGroup>
</Project>

Listing 7.1 Adding Markdown Lite as a package reference

Or pick a later version
from nuget.org

136 CHAPTER 7 Creating a microservice
Now try out some sample code. The following listing shows a test to convert simple
Markdown text into HTML and write the HTML to the console.

using System;
using Microsoft.DocAsCode.MarkdownLite;

namespace MarkdownLiteTest
{
 public class Program
 {
 public static void Main()
 {
 string source = @"
Building Your First .NET Core Applications
=======

In this chapter, we will learn how to setup our development environment,
create an application, and
";

 var builder = new GfmEngineBuilder(new Options());
 var engine = builder.CreateEngine(
 new HtmlRenderer());
 var result = engine.Markup(source);
 Console.WriteLine(result);
 }
 }
}

The output should look like this:

<h1 id="building-your-first-net-core-applications">
Building Your First .NET Core Applications</h1>
<p>In this chapter, we will learn how to setup our development environment,
create an application, and</p>

Markdown Lite doesn’t add <html> or <body> tags, which is nice for inserting the
generated HTML into a template.

 Now that you know how to use Markdown Lite, you can put it into a web service.

7.1.2 Creating an ASP.NET web service

In chapter 2 you created an ASP.NET Core service using Kestrel and some simple
request-handling code that returned a “Hello World” response for all incoming
requests. In this chapter’s example, you’ll need to process the input that comes in.
ASP.NET has some built-in mechanisms to route requests based on URI and HTTP
verb that you’ll take advantage of.

 Start by creating a new folder called MarkdownService and running dotnet new
web. Modify the project file as shown in the following listing.

Listing 7.2 Test console application using Markdown Lite

Renders
to HTML

Outputs to
a string

137Writing an ASP.NET web service

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All"
 Version="2.0.0" />
 <PackageReference Include="Microsoft.DocAsCode.MarkdownLite"
 Version="2.13.1" />
 </ItemGroup>

</Project>

The Program.cs file is responsible for starting the web server. Its code can be simpli-
fied to what’s shown in the next listing.

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace MarkdownService
{
 public class Program
 {
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

The Startup class is where you’ll configure ASP.NET MVC. MVC handles the incom-
ing requests and routes them depending on configuration and convention. Modify
the Startup.cs file to look like the code in the next listing.

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.DocAsCode.MarkdownLite;

namespace MarkdownService
{

Listing 7.3 Modifying the default web template project file

Listing 7.4 Program.cs for the Markdown Lite service starts the web server

Listing 7.5 A Startup.cs file for the Markdown Lite service that sets up MVC

The wwwroot folder
reference isn’t needed.

138 CHAPTER 7 Creating a microservice
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();

 var builder = new GfmEngineBuilder(new Options());
 var engine = builder.CreateEngine(new HtmlRenderer());
 services.AddSingleton<IMarkdownEngine>(engine);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

The IMarkdownEngine object is created at startup and added as a singleton to the
dependency injection. ASP.NET Core uses the same Microsoft.Extensions.Dependen-
cyInjection library you used in chapter 6.

 The next thing you need to do is create a controller. MVC uses reflection to find
your controllers, and it routes incoming requests to them. You just need to follow the
conventions. Create a new file called MdlController.cs and add the following code.

using System.Collections.Generic;
using System.IO;
using Microsoft.AspNetCore.Mvc;
using Microsoft.DocAsCode.MarkdownLite;

namespace MarkdownService
{
 [Route("/")]
 public class MdlController : Controller
 {
 private readonly IMarkdownEngine engine;

 public MdlController(IMarkdownEngine engine)
 {

MVC and Web API
MVC stands for “model, view, controller,” which is a pattern for building web applica-
tions. ASP.NET MVC was introduced as an alternative to the old WebForms approach
for building web applications. Neither was intended for REST services, so another
product called Web API was introduced for that purpose. In ASP.NET Core, Web API
and MVC have been merged into one, and WebForms no longer exists.

Listing 7.6 MdlController accepts Markdown text and returns HTML

Adds ASP.NET MVC
to the services

ASP.NET Core has
dependency
injection built in.

ASP.NET MVC will handle
the routing of requests.

Indicates you want calls
made to the root URL path

IMarkdownEngine comes
from dependency injection.

139Making HTTP calls
 this.engine = engine;
 }

 [HttpPost]
 public IActionResult Convert()
 {
 var reader = new StreamReader(Request.Body);
 var markdown = reader.ReadToEnd();
 var result = engine.Markup(markdown);
 return Content(result);
 }
 }
}

7.1.3 Testing the web service with Curl

After executing dotnet run, you should have a web server running on http://local-
host:5000. But if you navigate to this URL with a browser, you’ll get a 404. That’s
because in listing 7.6 you only created an HttpPost method. There’s no HttpGet
method. In order to test the service, you need to be able to send a POST with some
Markdown text in it.

 The quickest way to do this is with Curl. Curl is a command-line tool that you’ll
find very useful when developing web services and applications. It handles many more
protocols than HTTP and HTTPS.

HOW TO GET CURL Curl is available on all platforms. Visit https://
curl.haxx.se/download.html to download the version for your OS.

For our purposes, you’ll create an HTTP POST with the body contents taken from a
file. First, create a file, such as test.md, with some Markdown text in it. Then execute a
curl command like this one:

curl -X POST --data-binary @test.md http://localhost:5000
this was styled as tip

PRESERVE NEWLINES IN THE MARKDOWN FILE Use --data-binary instead of
-d to preserve newlines.

If all goes correctly, the generated HTML should be printed on the command line.
Curl made it possible to test your web service before writing the client code.

 Now that you have a working service, let’s look at how a client can make requests to
web services in .NET Core.

7.2 Making HTTP calls
You’ll use the Markdown Lite service created in the previous section to test with, so
leave it running and open another terminal. Go to the MarkdownLiteTest folder cre-
ated earlier. Add a test.md file to this folder with some sample Markdown (or copy the
file you used in the previous section). To make this file available while running the
MarkdownLiteTest application, you’ll need to copy it to the output folder, as follows.

This method
handles POSTs.

Request.Body is a
System.IO.Stream.

Reads the full incoming
request body into a string

Writes generated
HTML to response body

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

140 CHAPTER 7 Creating a microservice

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <None Include="test.md">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 </ItemGroup>
</Project>

Next, write the code that will POST data to an HTTP endpoint. The best option for
this in .NET Core is HttpClient. Modify the Program.cs file to add the code from
listing 7.8.

WEBCLIENT VS. HTTPCLIENT .NET Framework veterans may remember Web-
Client, which was originally not included in .NET Core because Http-
Client is a better option. Developers asked for WebClient to be included
because not all old WebClient code can be ported to HttpClient easily.
But when writing new code, stick with HttpClient.

using System;
using System.IO;
using System.Net.Http;

namespace MarkdownLiteTest
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var client = new HttpClient();
 var response = client.PostAsync(
 "http://localhost:5000",
 new StreamContent(
 new FileStream("test.md", FileMode.Open))
).Result;
 string markdown = response.Content.
 ReadAsStringAsync().Result;
 Console.WriteLine(markdown);
 }
 }
}

The StreamContent object inherits from HttpContent. You can provide any stream
to StreamContent, which means you don’t have to keep the full content of the POST

Listing 7.7 Copy test.md to project output, remove Markdown Lite reference

Listing 7.8 Using HttpClient to call a web service, POST a file, and read the response

Remove Markdown
Lite dependency

Recall from chapter 3 how to
copy files to project output.

Can optionally set a base address
in the HttpClient constructor

Reads the test.md markdown
file into an HttpContent object

Result blocks until
the PostAsync
operation is finished

ReadAsStringAsync returns a Task
object; call Result to get the string.

141Making the service asynchronous
in memory. The PostAsync method is also nice if you don’t want to block the thread
while waiting for the POST to complete.

 In this example, you didn’t take advantage of the async features of .NET, but to
build high-performance microservice applications, you need to understand how to
use those features.

7.3 Making the service asynchronous
In listing 7.8 you explicitly call .Result on the returned values of two async methods:
PostAsync and ReadAsStringAsync. These methods return Task objects. Your cli-
ent doesn’t need to be asynchronous because it’s only doing one thing. It doesn’t mat-
ter if you block the main thread, because there’s nothing else that needs to happen.

 Services, in contrast, can’t afford to tie up threads waiting for something. Let’s take
a closer look at the service code that converts the posted Markdown to HTML in the
next listing.

[HttpPost]
public IActionResult Convert()
{
 var reader = new StreamReader(Request.Body);
 var markdown = reader.ReadToEnd();
 var result = engine.Markup(markdown);
 return Content(result);
}

The problem with blocking the thread to read the incoming HTTP request is that the
client may not be executing as quickly as you think. If the client has a slow upload
speed or is malicious, it could take minutes to upload all the data. Meanwhile, the ser-
vice has a whole thread stuck on this client. Add enough of these clients, and soon
you’ll run out of available threads or memory.

 The solution to this problem is to rely on two powerful C# constructs called async
and await. The following listing shows how you could rewrite the Convert method
to be asynchronous.

[HttpPost]
public async Task<IActionResult> Convert()
{
 using (var reader = new StreamReader(Request.Body))
 {
 var markdown = await reader.ReadToEndAsync();
 var result = engine.Markup(markdown);
 return Content(result);
 }
}

Listing 7.9 Synchronous Convert method blocks a thread waiting for request content

Listing 7.10 Asynchronous Convert method that doesn’t block the thread

This is the call that
blocks the thread.

Marks the method as async and
returns a Task or Task<T>

This using block is just to
clean up the reader; it’s
not necessary for Async.

Awaits on the result
of ReadToEndAsync()

142 CHAPTER 7 Creating a microservice
HOW DOES ASYNC/AWAIT WORK? The async/await constructs are a bit of
compiler magic that make asynchronous code much easier to write. The
await signals a point in the method where the code will need to wait for some-
thing. The C# compiler will split the Convert method into two methods, with
the second being invoked when the awaited item is finished. This all happens
behind the scenes, but if you’re curious about how it works, try viewing the IL
(the .NET Intermediate Language—the stuff inside a .NET DLL) generated
for async methods in the ILDASM tool that comes with Visual Studio.

Now if the client uploads its request content slowly, the only impact is that it will hold
a socket open. The layers beneath your service code will gather the network I/O and
buffer it until the request content length is reached. This means your service can han-
dle more requests with fewer threads.

 Writing asynchronous code becomes more important when your service depends
on other services, which limit operations to the speed of the network. You’ll see an
example of this in the next section.

7.4 Getting data from Azure Blob Storage
Now that you’ve figured out how to convert Markdown to HTML, you can incorporate
Azure Blob Storage for storing posts. Instead of posting data to the Markdown service,
you’ll send it a BLOB name and have it return the converted HTML. You can do this
by adding a GET method to your service.

 Before going into that, though, you need to pull some values from configuration.

7.4.1 Getting values from configuration

Your code uses the Microsoft.Extensions.Configuration library, which you learned
about in chapter 6. You learned how to add a config.json file to your project, copy it to
the build output, and add the dependency on the Configuration library. Do that now
for this project, and consult chapter 6 if you need any tips.

 In order to read the config, you’ll need to create an IConfigurationRoot
object, as follows.

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.DocAsCode.MarkdownLite;

namespace MarkdownService
{
 public class Startup
 {
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();

Listing 7.11 Creating IConfigurationRoot object to get the configuration on startup

Add reference to
configuration library

143Getting data from Azure Blob Storage

ICon
R

 var builder = new GfmEngineBuilder(new Options());
 var engine = builder.CreateEngine(new HtmlRenderer());
 services.AddSingleton<IMarkdownEngine>(engine);

 var configBuilder = new ConfigurationBuilder();
 configBuilder.AddJsonFile("config.json", false);
 var configRoot = configBuilder.Build();
 services.AddSingleton<IConfigurationRoot>(
 configRoot);
 }

 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc();
 }
 }
}

In listing 7.11 you didn’t introduce a fallback for the configuration. That’s why the
config.json file isn’t optional.

 You’ll need to read the config values in the MdlController class. The code for
doing this is shown next.

using Microsoft.Extensions.Configuration;

public class MdlController : Controller
{
 private static readonly HttpClient client = new HttpClient();
 private readonly IMarkdownEngine engine;
 private readonly string AccountName;
 private readonly string AccountKey;
 private readonly string BlobEndpoint;
 private readonly string ServiceVersion;

 public MdlController(IMarkdownEngine engine,
 IConfigurationRoot configRoot)
 {
 this.engine = engine;
 AccountName = configRoot["AccountName"];
 AccountKey = configRoot["AccountKey"];
 BlobEndpoint = configRoot["BlobEndpoint"];
 ServiceVersion = configRoot["ServiceVersion"];
 }

The config.json file will have the four properties read in listing 7.12. The next listing
shows an example config file.

{
 "AccountName": "myaccount",
 "AccountKey": "<accountkey>",

Listing 7.12 Code to read the Azure storage account information from configuration

Listing 7.13 Example config.json file for the Markdown service

Reads the config.json
file, false indicates
it’s not optional

Create the
figuration-
oot object.

Add the IConfigurationRoot
object to DI.

Add the using for
the config library.

The configRoot object
will come from DI.

Extract the
config values.

144 CHAPTER 7 Creating a microservice

U
y.
 "BlobEndpoint": "https://myaccount.blob.core.windows.net/",
 "ServiceVersion": "2009-09-19"
}

COPY CONFIG.JSON TO OUTPUT FOLDER Don’t forget to modify the project file
to copy config.json to the output folder as you did earlier with test.md.

If you’re using the Azure emulator, often referred to as development storage, use the con-
figuration settings in the following listing.

{
 "AccountName": "devstoreaccount1",
 "AccountKey":
 "Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/

K1SZFPTOtr/KBHBeksoGMGw==",
 "BlobEndpoint": "http://127.0.0.1:10000/devstoreaccount1/",
 "ServiceVersion": "2009-09-19"
}

7.4.2 Creating the GetBlob method

In the following listing, you expect the caller to pass in the container and BLOB names
in the query string. The method makes a request to Azure Blob Storage to retrieve the
Markdown content. Your code uses Markdown Lite to convert the result to HTML and
sends the response to the caller. Add this code to the MdlController class.

using System;
using System.Net.Http;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;
using Microsoft.Extensions.Configuration;

[HttpGet]
public async Task<IActionResult> GetBlob(
 string container, string blob)
{
 var path = $"{container}/{blob}";
 var rfcDate = DateTime.UtcNow.ToString("R");
 var devStorage = BlobEndpoint.StartsWith("http://127.0.0.1:10000") ?
 $"/{AccountName}" : "";
 var signme = "GET\n\n\n\n\n\n\n\n\n\n\n\n" +
 "x-ms-blob-type:BlockBlob\n" +
 $"x-ms-date:{rfcDate}\n" +
 $"x-ms-version:{ServiceVersion}\n" +
 $"/{AccountName}/{path}";
 var uri = new Uri(BlobEndpoint + path);

Listing 7.14 config.json for connecting to the Azure emulator

Listing 7.15 GetBlob converts Markdown content from Azure Blob Storage to HTML

The account key is well known
and can be found online.

Add these usings to
the top of the file.

HttpGet indicates this method
is hit when using a GET verb.

Parameters can be specified in the
query string or request body.

Storage
emulator
computes
RI slightly
differently

The empty lines are header
properties you don’t want to specif

ServiceVersion comes
from config.json.

BlobEndpoint comes
from config.json.

145Getting data from Azure Blob Storage
 var request = new HttpRequestMessage(HttpMethod.Get, uri);
 request.Headers.Add("x-ms-blob-type", "BlockBlob");
 request.Headers.Add("x-ms-date", rfcDate);
 request.Headers.Add("x-ms-version", ServiceVersion);

 string signature = "";
 using (var sha = new HMACSHA256(
 System.Convert.FromBase64String(AccountKey)))
 {
 var data = Encoding.UTF8.GetBytes(signme);
 signature = System.Convert.ToBase64String(sha.ComputeHash(data));
 }

 var authHeader = $"SharedKey {AccountName}:{signature}";
 request.Headers.Add("Authorization", authHeader);

 var response = await client.SendAsync(request);
 var markdown = await response.Content.ReadAsStringAsync();
 var result = engine.Markup(markdown);
 return Content(result);
}

The code in listing 7.15 can seem overwhelming, so let’s break it down into manage-
able pieces. The first part is the method signature, shown in the next listing.

[HttpGet]
public async Task<IActionResult> GetBlob(
 string container, string blob)

The HttpGet attribute tells ASP.NET MVC that GetBlob receives client HTTP
requests using the GET verb. The parameters of the method, container and blob,
are expected to be passed from the client in the query string. For example, the client
could make a GET request to http://localhost:5000?container=somecontainer&blob
=test.md. MVC will extract the name/value pairs from the query string and match
them to the method parameters.

 Most of the code in GetBlob creates an HTTP request to send to Azure Blob Stor-
age. You’ll need an Azure storage account to test this (Azure has a 30-day free trial if
you don’t already have a subscription). There’s also an Azure storage emulator avail-
able as part of the Azure SDK, but it only works on Windows. Finally, there’s an open
source, cross-platform Azure storage emulator called Azurite, which you can find at
https://github.com/arafato/azurite.

 The GET blob request is encapsulated in an HttpRequestMessage object. Put the
code that creates that object into its own method, as shown in the next listing.

private HttpRequestMessage CreateRequest(
 HttpMethod verb, string container, string blob)

Listing 7.16 Signature for the GetBlob method

Listing 7.17 Create an HttpRequestMessage GET BLOB request to Azure storage

Notice the same
properties
in signme string.

AccountKey comes from config.json,
used to created signature

Use SHA to create the signature
in the authorization property.

AccountName comes
from config.json.

Sending the request
and receiving the
response are both
async methods.

http://localhost:5000?container=somecontainer&blob=test.md
http://localhost:5000?container=somecontainer&blob=test.md
https://github.com/arafato/azurite

146 CHAPTER 7 Creating a microservice

Con
t

{
 var path = $"{container}/{blob}";
 var rfcDate = DateTime.UtcNow.ToString("R");
 var uri = new Uri(BlobEndpoint + path);
 var request = new HttpRequestMessage(verb, uri);
 request.Headers.Add("x-ms-blob-type", "BlockBlob");
 request.Headers.Add("x-ms-date", rfcDate);
 request.Headers.Add("x-ms-version", ServiceVersion);

 var authHeader = GetAuthHeader(
 verb.ToString().ToUpper(), path, rfcDate);
 request.Headers.Add("Authorization", authHeader);

 return request;
}

Although this chapter focuses on making requests to Azure Blob Storage, the same
techniques apply to other HTTP services. You’ll be writing several operations against
Azure Blob Storage in this chapter, so you’ll be able to reuse CreateRequest in
other operations.

 Azure BLOB containers have different levels of exposure. It’s possible to expose
the contents publicly so that a request doesn’t need authentication. In this case, the
container is private. The only way to access it is to use a shared key to create an
authentication header in the request. In listing 7.17, the code for creating the authen-
tication header is split into a separate method called GetAuthHeader. The code for
GetAuthHeader is shown in the following listing.

private string GetAuthHeader(string verb, string path, string rfcDate)
{
 var devStorage = BlobEndpoint.StartsWith("http://127.0.0.1:10000") ?
 $"/{AccountName}" : "";
 var signme = $"{verb}\n\n\n\n\n\n\n\n\n\n\n\n" +
 "x-ms-blob-type:BlockBlob\n" +
 $"x-ms-date:{rfcDate}\n" +
 $"x-ms-version:{ServiceVersion}\n" +
 $"/{AccountName}{devStorage}/{path}";

 string signature;
 using (var sha = new HMACSHA256(
 System.Convert.FromBase64String(AccountKey)))
 {
 var data = Encoding.UTF8.GetBytes(signme);
 signature = System.Convert.ToBase64String(
 sha.ComputeHash(data));
 }

 return $"SharedKey {AccountName}:{signature}";
}

Listing 7.18 Create authentication header for Azure storage using shared account key

The date and time of the
request in RFC1123 format

structs
he URI Indicates BLOB type—

blocks are a good default

Azure storage version

Covered later
in this section

The newlines are fields you
don’t need to specify.

The account key is available
in the Azure portal.

Hashes the bytes from the signme
string with the account key

There’s also SharedKeyLite,
which has fewer newlines.

147Getting data from Azure Blob Storage
The aim of this method is to produce a hashed version of the request header. The
server will perform the same hash and compare it against the value you sent. If they
don’t match, it will report an error and tell you what content it hashed. This helps in
case you’ve mistyped something.

LEARN MORE ABOUT AUTHENTICATING WITH AZURE Authentication for Azure
storage is covered in depth in “Authentication for the Azure Storage Services”
at http://mng.bz/7j0B.

The previous helper methods have made the GetBlob method much shorter. The
updated version is shown in the next listing.

[HttpGet]
public async Task<IActionResult> GetBlob(string container, string blob)
{
 var request = CreateRequest(HttpMethod.Get, container, blob);

 var response = await client.SendAsync(request);
 var markdown = await response.Content.ReadAsStringAsync();
 var result = engine.Markup(markdown);
 return Content(result);
}

7.4.3 Testing the new Azure storage operation

The Markdown service now has a GET operation. The first step in testing it is to put a
Markdown file in an Azure BLOB container. There are many tools for doing this,
including the Azure portal. You’ll also need to get the account name and key from the
Azure portal to populate the values in the config.json file.

 Once the Markdown files are in place, you can make a request to the Markdown
service with a console application. The following listing shows the contents of the Pro-
gram.cs file in a console application that tests the new Azure storage operation.

using System;
using System.IO;
using System.Net.Http;

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var client = new HttpClient();
 var response = client.GetAsync(
 "http://localhost:5000?container=somecontainer&blob=test.md")
 .Result;

Listing 7.19 GetBlob using helper methods to create HTTP request

Listing 7.20 Console application that calls Markdown service’s Azure storage operation

http://mng.bz/7j0B

148 CHAPTER 7 Creating a microservice

str
th
 string markdown = response.Content.
 ReadAsStringAsync().Result;
 Console.WriteLine(markdown);
 }
 }
}

Conversely, you can use the following curl command:

curl http://localhost:5000?container=somecontainer&blob=test.md

USE QUOTES ON WINDOWS The quotations around the URL in listing 7.20 are
necessary for Windows. The & symbol has a special meaning in Windows com-
mand-line scripting.

7.5 Uploading and receiving uploaded data
Your Markdown service isn’t technically a microservice. One of the key principles of a
microservice is that it has its own isolated data source. In the previous section, you
added BLOBs to the Azure storage account either through the Azure portal or an
external tool.

 In order to isolate the data source for the Markdown service, you’ll need to add
methods to upload new BLOBs and change existing BLOBs. To achieve this, you’ll
add a PUT operation, as in the following listing.

[HttpPut("{container}/{blob}")]
public async Task<IActionResult> PutBlob(string container, string blob)
{
 var contentLen = this.Request.ContentLength;
 var request = CreateRequest(HttpMethod.Put,
 container, blob, contentLen);
 request.Content = new StreamContent(
 this.Request.Body);
 request.Content.Headers.Add("Content-Length",
 contentLen.ToString());

 var response = await client.SendAsync(request);
 if (response.StatusCode == HttpStatusCode.Created)
 return Created(
 $"{AccountName}/{container}/{blob}", null);
 else
 return Content(await
 response.Content.ReadAsStringAsync());
}

In the PutBlob method, you’re essentially taking a PUT request and creating your
own request with the right authorization header for Azure Blob Storage. In a produc-
tion service, you wouldn’t expose a secure resource through an insecure one—secur-
ing services with ASP.NET Core is a deep subject that you can read about in ASP.NET

Listing 7.21 Operation to upload a BLOB to Markdown service’s BLOB storage account

Gets content length
from request

Content length needed
to create request headerReads the

eam from
e request
into your

request

Notice that this header
is on the request content.

Responds with 201
status code and path

Sends any errors
back to client

149Uploading and receiving uploaded data

On

“C
Core in Action by Andrew Lock (Manning, 2018). The purpose of this example is to
explore how PUT operations work.

 An HTTP PUT operation is considered idempotent, which means that no matter how
many times you call it, it will result in the same outcome. If you PUT the same BLOB
multiple times, each call will return a 201—a duplicate call won’t result in adverse
effects. Contrast this with POST, which isn’t idempotent. If you perform a POST and it
times out, the state of the resource is unknown, and you’d need to make a GET call to
verify the state of the resource before retrying the POST. In the Markdown service, you
use POST only for an operation that doesn’t save data.

 The content of the Markdown file that the client is requesting to store in your service
is in the body of the request. You can get a Stream with the content data directly from
this.Request.Body. Rather than measure the length of the content yourself, you get
it from the incoming request using this.Request.ContentLength. The content
length is a required header for PUT operations to Azure Blob Storage, but you’ll notice
that it’s added to Request.Content.Headers instead of Request.Headers. Con-
tent headers include things like length, type, and encoding. This is probably because
these headers are special and are indicated by position rather than name. To see what
I mean by that, look at how the authentication header is created in the next listing.

private string GetAuthHeader(string verb, string path,
 string rfcDate, long? contentLen)
{
 var devStorage = BlobEndpoint.StartsWith("http://127.0.0.1:10000") ?
 $"/{AccountName}" : "";
 var signme = $"{verb}\n\n\n" +
 $"{contentLen}\n" +
 "\n\n\n\n\n\n\n\n" +
 "x-ms-blob-type:BlockBlob\n" +
 $"x-ms-date:{rfcDate}\n" +
 $"x-ms-version:{ServiceVersion}\n" +
 $"/{AccountName}{devStorage}/{path}";

 string signature;
 using (var sha = new

HMACSHA256(System.Convert.FromBase64String(AccountKey)))
 {
 var data = Encoding.UTF8.GetBytes(signme);
 signature = System.Convert.ToBase64String(sha.ComputeHash(data));
 }

 return $"SharedKey {AccountName}:{signature}";
}

For a PUT operation against Azure Blob Storage, only the content length is required.
It goes three lines after the verb.

 Because contentLen is a nullable long, nothing will be written if it’s null. If you
used a regular long value type contentLen would have some default value (like 0),

Listing 7.22 GetAuthHeader method modified to allow content-length specification

Optional value for content length

Content length is three
lines after the verbly the number is

written, not
ontent-Length:”.

150 CHAPTER 7 Creating a microservice
and that would get written to the signme string. Using the nullable long means you
don’t have to do anything special for GET vs. PUT requests. The CreateRequest
helper method needs to provide a default null value, as shown in the following listing.

private HttpRequestMessage CreateRequest(HttpMethod verb,
 string container, string blob,
 long? contentLen = default(long?))
{
 ...

 var authHeader = GetAuthHeader(verb.ToString().ToUpper(),
 path, rfcDate, contentLen);
 request.Headers.Add("Authorization", authHeader);

 return request;
}

DEFAULT PARAMETERS Default parameters are a handy C# feature. They must
go at the end of the parameter list and they’re specified by assigning a default
value with =. The default() keyword creates a constant value. In the case of
nullable types, like long?, the default is null.

To test this new method in the Markdown service, you can use the same code and curl
commands as in the code snippet in section 7.1.3, earlier in the chapter. Simply
change POST to PUT and modify the URL to include the container and BLOB name.
Listings 7.24 and 7.25 show how to do this.

curl -X PUT --data-binary @test.md
http://localhost:5000/somecontainer/foo.md

var response = client.PutAsync(
 "http://localhost:5000/somecontainer/foo.md",
 new StreamContent(
 new FileStream("test.md", FileMode.Open))
).Result;

7.6 Listing containers and BLOBs
Now that you have the ability to upload BLOBs to containers, you should expose a way
for clients to get the list of containers and of BLOBs in the containers. The most
straightforward way is to modify the HttpGet operation to allow null values for
BLOB or container. A null BLOB parameter would indicate that the client wants a
list of all BLOBs in the container. A null container parameter would indicate that
they want a list of all containers.

Listing 7.23 CreateRequest method changed to allow content-length specification

Listing 7.24 Curl command to test the PutBlob operation

Listing 7.25 C# client code to test the PutBlob operation

Default parameter, in
case it’s not specified

Default contentLen
is null

151Listing containers and BLOBs
 Azure Blob Storage supports list requests, returning the lists in XML documents.
Up until now, you haven’t specified a content type for the response. The default con-
tent type from ASP.NET is “text/html”, which is perfect for a response that’s Mark-
down converted to HTML. In this example, you’ll return the result of the Azure
storage call. The following listing shows the modifications to support returning XML.

[HttpGet]
public async Task<IActionResult> GetBlob(string container, string blob)
{
 var request = CreateRequest(HttpMethod.Get, container, blob);
 var contentType = blob == null ? "text/xml" :
 "text/html";

 var response = await client.SendAsync(request);
 var responseContent = await response.Content.ReadAsStringAsync();
 if (blob != null)
 responseContent = engine.Markup(responseContent);
 return Content(responseContent, contentType);
}

Making a GET request to the service with the BLOB or container parameter not speci-
fied will result in null values being passed into the GetBlob method. To request a list
of BLOBs in the “somecontainer” container, you’d use the URL http://local-
host:5000?container=somecontainer. To get a list of all the containers, you’d use
http://localhost:5000.

 A list request to Azure Blob Storage is slightly different than the GET requests
you’ve made so far. The following listing shows the updates to the helper methods for
listing BLOBs and containers.

private HttpRequestMessage CreateRequest(HttpMethod verb,
 string container, string blob, long? contentLen = default(long?))
{
 string path;
 Uri uri;
 if (blob != null)
 {
 path = $"{container}/{blob}";
 uri = new Uri(BlobEndpoint + path);
 }
 else if (container != null)
 {
 path = container;
 uri = new Uri($"{BlobEndpoint}{path}?restype=container&comp=list");
 }
 else

Listing 7.26 HttpGet operation can also list containers and BLOBs

Listing 7.27 Modifying helper methods to support listing BLOBs and containers

Assumes that if container
is null, so is BLOB

Only converts if
it’s Markdown

Overrides default
content type of text/html

Gets BLOB
content

Lists BLOBs
in a container

Lists containers

152 CHAPTER 7 Creating a microservice
 {
 path = "";
 uri = new Uri($"{BlobEndpoint}?comp=list");
 }

 var rfcDate = DateTime.UtcNow.ToString("R");
 var request = new HttpRequestMessage(verb, uri);
 if (blob != null)
 request.Headers.Add("x-ms-blob-type", "BlockBlob");
 request.Headers.Add("x-ms-date", rfcDate);
 request.Headers.Add("x-ms-version", ServiceVersion);

 var authHeader = GetAuthHeader(verb.ToString().ToUpper(), path, rfcDate,
 contentLen, blob == null, container == null);
 request.Headers.Add("Authorization", authHeader);

 return request;
}

private string GetAuthHeader(string verb, string path, string rfcDate,
 long? contentLen, bool listBlob, bool listContainer)
{
 var devStorage = BlobEndpoint.StartsWith("http://127.0.0.1:10000") ?
 $"/{AccountName}" : "";
 var signme = $"{verb}\n\n\n" +
 $"{contentLen}\n" +
 "\n\n\n\n\n\n\n\n" +
 (listBlob ? "" : "x-ms-blob-type:BlockBlob\n") +
 $"x-ms-date:{rfcDate}\n" +
 $"x-ms-version:{ServiceVersion}\n" +
 $"/{AccountName}{devStorage}/{path}";
 if (listContainer)
 signme += "\ncomp:list";
 else if (listBlob)
 signme += "\ncomp:list\nrestype:container";

 string signature;
 using (var sha = new

HMACSHA256(System.Convert.FromBase64String(AccountKey)))
 {
 var data = Encoding.UTF8.GetBytes(signme);
 signature = System.Convert.ToBase64String(sha.ComputeHash(data));
 }

 return $"SharedKey {AccountName}:{signature}";
}

7.7 Deleting a BLOB
To round out the functionality of the Markdown service, you’ll add the ability to
delete a BLOB from a container. A request with a DELETE verb has a similar structure
as a GET request. The only real consideration is what status code to return.

 Azure Blob Storage will return a 202 (Accepted) status code when issuing a delete
BLOB command. This is because the BLOB immediately becomes unavailable but

Doesn’t write this
header for list requests

Leaves BLOB type
out of auth header

Adds query string parameters
to auth header when listing

153Summary
isn’t deleted until a garbage collection happens. This is in line with RFC 2616 of the
HTTP specification:

A successful response SHOULD be 200 (OK) if the response includes an entity
describing the status, 202 (Accepted) if the action has not yet been enacted, or 204 (No
Content) if the action has been enacted but the response does not include an entity.

— RFC 2616 (https://tools.ietf.org/html/rfc2616#section-9.7)

For the Markdown service, the BLOB is essentially deleted. You won’t return the value
of the BLOB in the response, so a 204 (No Content) seems more appropriate. The fol-
lowing listing shows how to write the delete operation.

[HttpDelete]
public async Task<IActionResult> DeleteBlob(string container, string blob)
{
 var request = CreateRequest(HttpMethod.Delete,
 container, blob);

 var response = await client.SendAsync(request);
 if (response.StatusCode==HttpStatusCode.Accepted)
 return NoContent();
 else
 return Content(await response.Content.ReadAsStringAsync());
}

With the HttpDelete operation added, your service now handles the GET, PUT, POST,
and DELETE HTTP verbs. The only verb we won’t cover is PATCH ([HttpPatch]),
which is used for partial modification of a record. Azure Blob Storage doesn’t support
PATCH, so it doesn’t apply to this example.

Additional resources
To learn more about what we covered in this chapter, try the following resources:

 Microservices in .NET Core by Christian Horsdal Gammelgaard (Manning,
2017)—http://mng.bz/qREF

 ASP.NET Core in Action by Andrew Lock (Manning, 2018)—http://mng.bz/DI1O
 Azurite Azure storage emulator for Mac/Linux—https://github.com/arafato/

azurite
 “Authentication for the Azure Storage Services”—http://mng.bz/7j0B
 Curl—https://curl.haxx.se/

Summary
In this chapter you learned how to write a microservice and communicate with other
HTTP services as a client. These key concepts were covered:

 Use HttpClient to make requests.

Listing 7.28 DeleteBlob operation to delete a BLOB from a container

Don’t forget to use
the right verb here.

Successfully deleted
blob, return 204

https://tools.ietf.org/html/rfc2616#section-9.7
http://mng.bz/qREF
http://mng.bz/DI1O
https://github.com/arafato/azurite
https://github.com/arafato/azurite
http://mng.bz/7j0B
https://curl.haxx.se/

154 CHAPTER 7 Creating a microservice
 ASP.NET Core routes messages based on the HttpGet, HttpPost, and other
attributes.

 ASP.NET Core automatically populates method parameters and also allows
access to the raw stream from the request.

 Microservices control their own data stores.

Here are some important techniques to remember from this chapter:

 A library called Markdown Lite is available for quick and easy conversion of
Markdown to HTML.

 Async programming leaves threads unblocked, which improves the perfor-
mance of your application.

 Curl is a powerful and simple tool for quickly testing your services.

Much of modern programming involves writing and communicating with HTTP ser-
vices. ASP.NET Core makes writing HTTP REST services quick and intuitive by using a
convention-based approach. Methods like Content, Created, Accepted, and the
like match the HTTP specifications. Routing requests to the right methods is handled
via the Http* attributes, and accessing parameters from the URI or query string
doesn’t require manual parsing.

 Making HTTP requests from .NET Core code is also straightforward. The Http-
Client class offers useful helper methods. In this chapter, you used HttpClient to
communicate with Azure storage. For .NET Framework developers used to having the
Azure SDK, contacting the HTTP services directly can seem daunting. But once you
understand how to authenticate, it’s easy.

Debugging
Debuggers are valuable tools when developing any kind of software. Most of them
are fairly intuitive to use, which may make you wonder why I would dedicate a chap-
ter to this subject.

 Many developers, especially if they’re used to Visual Studio and the .NET
Framework, don’t realize what options are available for debugging in other editors
or on other operating systems. Also, command-line debuggers still have a place in
the modern developer’s toolbox because they can do powerful things that GUI
debuggers can’t. By the end of this chapter, you’ll be armed with the information
you need to debug .NET Core applications almost anywhere.

This chapter covers
 Debuggers in the Visual Studio line of products

 WinDBG/CDB—an advanced debugger that works
from the command line

 LLDB for debugging on Linux and macOS

 SOS—the extension that makes CDB and LLDB
work with .NET Core
155

156 CHAPTER 8 Debugging

W

8.1 Debugging applications with Visual Studio Code
I introduced Visual Studio Code (VS Code) in chapter 2. It’s Microsoft’s lightweight,
cross-platform, extensible text editor (similar to the Atom text editor). If you installed
the C# extension from Microsoft, then you’ve likely seen the debug capabilities show
up on both the menu and the left-side bar. VS Code may have also nagged you to add
“required assets to build and debug.” If not, try creating a new project and opening VS
Code with the following commands:

mkdir Test1
cd Test1
dotnet new console
code .

Open the Program.cs file and click somewhere on the text in the file. You’ll see a cou-
ple of things happen: a bin folder will be created because VS Code is building the
code immediately, and a warning message will be displayed at the top asking you to
add assets to Test1. Clicking Yes will create a new folder under Test1 called .vscode
with two files: launch.json and tasks.json (shown in listings 8.1 and 8.2).

GENERATING VS CODE BUILDING ASSETS If you missed the prompt to add build-
ing assets, you can open the command palette and select .NET: Generate
Assets for Build and Debug.

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": ".NET Core Launch (console)",
 "type": "coreclr",
 "request": "launch",
 "preLaunchTask": "build",
 "program":
 "${workspaceRoot}/bin/Debug/netcoreapp2.0/Test1.dll",
 "args": [],
 "cwd": "${workspaceRoot}",
 "console": "internalConsole",
 "stopAtEntry": false,
 "internalConsoleOptions": "openOnSessionStart",
 "justMyCode": true,
 "requireExactSource": true,
 "enableStepFiltering": true
 },
 {
 "name": ".NET Core Attach",
 "type": "coreclr",
 "request": "attach",
 "processId": "${command:pickProcess}"

Listing 8.1 launch.json allows you to configure the debugger for your application

If you change to netstandard,
change this value.

Command-line
arguments for Test1

here console
output goes

Turning this off lets you
step into other libraries.

Turning this off lets
you use a different
version of the source.Turning this off

lets you debug
into properties.

157Debugging applications with Visual Studio Code
 }
]
}

USING AN EXTERNAL TERMINAL If you’re used to Visual Studio’s external com-
mand prompt, you can change the "console" setting to "external-
Terminal" to get the same behavior.

DEBUGGING THROUGH REFERENCED CODE When using a library developed by
another team, you can step into their code by setting "justMyCode" to
false. But you may have trouble if your local copy of their source doesn’t
match the version of the package you’re using. By turning off the "require-
ExactSource" flag, the debugger will make a best guess as to what line
you’re on. This can sometimes be good enough to figure out the cause of an
issue.

{
 "version": "0.1.0",
 "command": "dotnet",
 "isShellCommand": true,
 "args": [],
 "tasks": [
 {
 "taskName": "build",
 "args": [
 "${workspaceRoot}/mytests.csproj"
],
 "isBuildCommand": true,
 "problemMatcher": "$msCompile"
 },
 {
 "taskName": "test",
 "args": [
 "${workspaceRoot}/mytests.csproj"
],
 "isTestCommand": true,
 "problemMatcher": "$msCompile"
 }
]
}

The Tasks menu in VS Code has a Run Build Task option with a shortcut defined as
Ctrl-Shift-B (the same shortcut used in Visual Studio 2017). This will execute the
build task defined in tasks.json. You can also use the Run Task option item and pick
the task you want to run.

 If you defined test like in listing 8.2, the list of available tasks will include test.

YOU CAN ADD CUSTOM TASKS You may find it useful to add other tasks, such as
for packaging, publishing, or running tools like the Entity Framework tools.

Listing 8.2 tasks.json defines how to perform tasks such as build and test

Calls the dotnet
CLI command

"build" is added to the dotnet command
(for example, “dotnet build”).

"test" is not included by default,
but you can add it as shown.

Currently unused
by VS Code

158 CHAPTER 8 Debugging
8.1.1 Using the .NET Core debugger

Let’s look at an example application and see how the VS Code debugger works in
action. Back in chapter 6 you created a data access library using Dapper and depen-
dency injection (you can get the code from GitHub at http://mng.bz/F146 if you
don’t have it handy). The data-access library has a method that creates an order in a
database based on an Order object. If a field isn’t specified in this object, CreateOr-
der may fail, and you can use the debugger to determine where the failure occurs.

 All the chapter 6 Dapper projects are contained in a folder called DapperDi. From
a terminal or command prompt, change to the DapperDi folder and run code .\ to
start VS Code with the current folder open. Add the build and debug resources as
prompted. Then find the unit test file and modify the test as follows.

[Fact]
public void Test1()
{
 var orders = context.GetOrders();
 Assert.Equal(0, orders.Count());
 var supplier = context.Suppliers.First();
 var part = context.Parts.First();
 var order = new Order() {
 SupplierId = supplier.Id,
 Supplier = supplier,
 PartTypeId = part.Id,
 //Part = part,
 PartCount = 10,
 PlacedDate = DateTime.Now
 };
 context.CreateOrder(order);
 Assert.NotEqual(0, order.Id);
 orders = context.GetOrders();
 Assert.Equal(1, orders.Count());
}

USE AN IN-MEMORY DATABASE FOR THIS EXAMPLE You may also want to change
the config.json file to use the in-memory database, because you’ll likely run
this test many times.

It’s easy to forget to set all the properties on an Order with the data-access layer you
created in chapter 6. Let’s see how you could debug this issue with VS Code.

 As you learned in chapter 4, VS Code will put links above the test method that
allow you to run or debug an individual test. Click the Debug Test link. The debugger
will stop when it gets a NullReferenceException. You should see something like
figure 8.1.

 The stack trace for the NullReferenceException shows the line throw; as being
the line where the exception occurred. Normally, the throw; would preserve the stack
trace from the original exception. But in this case you performed some work,

Listing 8.3 An example of a test that you’ll need to debug

This is the change
from the existing test.

http://mng.bz/F146

159Debugging applications with Visual Studio Code
(transaction.Rollback();), and that resulted in the stack trace being lost. You can
fix this by changing the code in this catch statement, as shown in the following listing.

catch (Exception exc) {
 transaction.Rollback();
 throw new AggregateException(exc);
}

Listing 8.4 Modifying catch to wrap the original exception

The debug pane has
familiar debugging sections:
Locals, Watch, Call Stack,
and Breakpoints.

Clicking on a line in the Call
Stack takes you to that
line in the source code.

The Debug Console lets you type C#
expressions (much like the Immediate
Window in Visual Studio 2017).

This exception is
reported on line 77.

Lists profiles for
debugging that are
controlled by launch.json.

Toolbar contains debugger
commands like resume,
step into, and stop.

Figure 8.1 Visual Studio Code debugger stopped on an exception

AggregateException can hold
many inner exceptions.

160 CHAPTER 8 Debugging
WHY USE AN AGGREGATEEXCEPTION? The AggregateException is common to
asynchronous programming because it’s possible that multiple threads can
encounter exceptions and you want to capture all of them. I use an Aggregate-
Exception here because it indicates to the person debugging that only the
inner exceptions are important.

Now debug the test, and the exception information (shown in figure 8.2) should be
slightly more helpful.

Figure 8.2 Visual Studio Code debugger stopped on a wrapped exception

As you can see, Visual Studio Code has powerful debugging capabilities. It should feel
familiar to most developers who have worked with debuggers before. Also, all of these
features will work regardless of the operating system you’re using.

8.2 Debugging with Visual Studio 2017
Visual Studio 2017 is the latest version of the flagship integrated development envi-
ronment from Microsoft, and it has a rich set of debugging capabilities. To see the dif-
ferences between VS 2017 and VS Code, try debugging the same unit test as before.
Figure 8.3 shows what this might look like.

VISUAL STUDIO NEEDS A PROJECT TO DISCOVER TESTS In VS Code, you open a
folder. In Visual Studio there’s an option to open a folder, but even though it
may build the projects, it doesn’t see the tests. The Test Explorer will be
empty. Instead, you need to create a new solution and add the projects.

Line 64 is everything from
64 to 71, because the debug
symbols can’t distinguish how
you spaced things out.

The exc variable has the stack trace
we’re interested in; it points to line 64.

Using the mouse cursor,
you can check current values.
Mousing over order.Part reveals
that Part is null.

161Debugging with Visual Studio 2017

Figure 8.3 Visual Studio 2017 debugger stopped on an exception

Results from previous test
run, shown in Test Explorer IntelliTrace events

Same windows as in VS Code,
organized differently

Exception Settings let you
break when an individual
exception is thrown.

162 CHAPTER 8 Debugging
By altering the exception settings to break on the NullReferenceException, you
can see the exception before it’s caught in the catch statement. In VS Code, you
don’t have the same granularity, but you can break on all exceptions.

8.3 Debugging with Visual Studio for Mac
Visual Studio for Mac bears a resemblance to the other products in the Visual Studio
family. One slightly different feature is the Exception Catchpoint. To try this, go to the
Run menu and choose New Exception Catchpoint. You’ll see the dialog box shown in
figure 8.4.

Figure 8.4 Visual Studio for Mac New Exception Catchpoint dialog box

IntelliTrace
The IntelliTrace feature doesn’t come with the Community edition of Visual Studio
2017. If you happen to have an Enterprise edition, this is definitely a feature worth
checking out.

IntelliTrace will capture events during the debugging session. You can then select
these events from the Events window (shown in figure 8.3) and use the Historical
Debugging feature to see the state of your application at that time with local variables
and call stack. This comes in handy when unwinding complex problems.

Instead of breaking,
you can write a
debug message.

You can pick an
exception and any
of its subclasses.

Advanced Conditions
let you break on the
third exception, for
example.

163SOS
The same Advanced Conditions functionality is available in other debuggers, includ-
ing Visual Studio 2017 and Visual Studio Code, with the name “conditional break-
points.” The slight differences in terminology stem from VS for Mac actually being a
rebranded Xamarin Studio.

 Visual Studio for Mac doesn’t look that different from Visual Studio 2017, at least
when it comes to debugging. Figure 8.5 shows what VS for Mac looks like in action.

Figure 8.5 Visual Studio for Mac debugging a NullReferenceException

8.4 SOS
So far, we’ve only explored graphical debuggers. But some things can’t easily be
expressed in a GUI. That’s why every developer should have a command-line debug-
ger in their toolbox.

 The .NET Framework comes with an extension for the Windows Debugger
(WinDBG) that contains powerful commands for interpreting .NET’s managed mem-
ory, types, functions, and so on. This extension is called SOS. It works for .NET Core
and on the cross-platform LLDB debugger.

Exception notification popup
Unit Tests pane—control-click
to debug instead of run tests

Locals, Watch,
and Threads

Exception catchpoint is
shown as a breakpoint
and can be disabled

Call Stack pane lets
you navigate to different
lines in the call stack

Immediate window
for testing expressions

164 CHAPTER 8 Debugging
WHAT DOES SOS MEAN? SOS isn’t a distress signal—it stands for Son Of Strike.
If you’re interested in trivia, you can do a search to find out the history of the
name.

8.4.1 Easier to get started with a self-contained app

One of the nice things about the Visual Studio debuggers is that they hide some of the
more confusing parts of the .NET SDK. When you run dotnet test, several child
processes are spawned to do things like restore and build the project. Even if you skip
the build and restore steps, child processes are still created. The problem isn’t insur-
mountable; it’s just difficult to take on if you’re beginning.

 A much easier way to get started with SOS-based debugging is to create a self-con-
tained application. You learned about these back in chapter 2. Create a new console
application by running the following command from the DapperDi folder:

dotnet new console -o ScmConsole

Modify the ScmConsole.csproj file as shown in the following listing to create a self-
contained application and add the necessary references.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 <RuntimeIdentifiers>win10-x64;osx.10.12-x64
 </RuntimeIdentifiers>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.Extensions.DependencyInjection.Abstractions"
 Version="2.0.0-*" />
 <PackageReference Include="Microsoft.Extensions.DependencyInjection"
 Version="2.0.0-*" />
 <PackageReference Include="SQLitePCLRaw.bundle_green"
 Version="1.1.8" />
 <ProjectReference Include="../SqliteScmTest/SqliteScmTest.csproj" />
 </ItemGroup>
</Project>

This project takes an indirect dependency on SqliteDal. In order to get the self-con-
tained application building, you need to change SqliteDal to .NET Standard 2.0 and
change some of its references. Make the following changes.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>

Listing 8.5 Contents of ScmConsole.csproj

Listing 8.6 Making SqliteDal.csproj a self-contained app on Windows

Needs a runtime identifier
for a self-contained app
(see appendix A)

Needed for running
SQLite on Mac and Linux

165SOS
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Data.Sqlite.Core"
 Version="2.0.0-*" />
 <PackageReference Include="Dapper"
 Version="1.50.2" />
 <PackageReference Include="System.Data.SqlClient"
 Version="4.3.1" />
 <ProjectReference Include="../ScmDataAccess/ScmDataAccess.csproj" />
 </ItemGroup>
</Project>

Next, add the following code to the Program.cs file of ScmConsole.

using System;
using System.Linq;
using Microsoft.Extensions.DependencyInjection;
using ScmDataAccess;
using SqliteScmTest;

namespace ScmConsole
{
 class Program
 {
 static void Main(string[] args)
 {
 SQLitePCL.Batteries.Init();
 var fixture = new SampleScmDataFixture();
 var context = fixture.Services.
 GetRequiredService<IScmContext>();
 var supplier = context.Suppliers.First();
 var part = context.Parts.First();
 var order = new Order() {
 SupplierId = supplier.Id,
 Supplier = supplier,
 PartTypeId = part.Id,
 //Part = part,
 PartCount = 10,
 PlacedDate = DateTime.Now
 };
 context.CreateOrder(order);
 }
 }
}

Now you can run dotnet restore to make sure all the packages are set up correctly.
Then run the publish command to create the self-contained app:

dotnet publish -c Debug -r win10-x64

Listing 8.7 Program.cs for the ScmConsole app will create an order, like in the unit test

Dapper references
old version of SqlClient

You need a later version to
create a self-contained app.

Sets up SQLite before you
open the connection

You can use Release, but Debug
will be easier for debugging.

http://www.stevestechspot.com/)%E2%80%94A

166 CHAPTER 8 Debugging
The executable will be published to the ScmConsole\bin\Debug\netcoreapp2.0\win10-
x64\publish\ folder. You can run ScmConsole.exe from there, and it should crash.

8.4.2 WinDBG/CDB

WinDBG and CDB are essentially the same debugger, except CDB is command-line-
based, whereas WinDBG is GUI-based. For the purposes of this chapter, it doesn’t mat-
ter which one you use.

 To get these tools, you’ll need to install the Debugging Tools for Windows that
come with the Windows SDK (http://mng.bz/j0xk). You can choose to install only the
Debugging Tools during the installation.

 Once they’re installed, go back to your console and change to the folder where the
self-contained ScmConsole app was published. Launch the app with the debugger
attached by using the following command:

"C:\Program Files (x86)\Windows Kits\10\Debuggers\x64\cdb.exe" ScmConsole.exe

GETTING THE DEBUGGER TO STOP WHEN AN EXCEPTION IS THROWN

The debugger will pause once it’s started. That gives you a chance to set up stops and
breakpoints.

 In this case, you need the process to load the .NET Core CLR before you set any
breakpoints. To do that, you can tell the debugger to stop when it loads a certain mod-
ule or assembly. Use the following commands to tell CDB to stop when the Scm-
Console assembly is loaded:

sxe ld ScmConsole
g

The program should stop shortly. You’ll see some log messages indicating which assem-
blies have been loaded. Among those should be coreclr.dll from your publish folder.

 Now you can load SOS and set a breakpoint for when the AggregateException
is thrown:

.loadby sos coreclr
!soe -create System.AggregateException
g

You should see two access violations before hitting the breakpoint. You’ll need to
resume (g) each time an access violation is hit. The output will look something like
the following.

(1ec8.4c34): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
00007ffd`d54e22bf 3909 cmp dword ptr [rcx],ecx

ds:00000000`00000000=????????

Listing 8.8 Output when hitting access violations and then the AggregateException

Tells the debugger
to “go”

“soe” is short for
“stop on exception.”

http://mng.bz/j0xk

167SOS
0:000> g
(1ec8.4c34): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
KERNELBASE!RaiseException+0x68:
00007ffe`6f8c1f28 488b8c24c0000000 mov rcx,qword ptr [rsp+0C0h]

ss:00000007`5d17daf0=0000ec5c4ecdfd0d
0:000> g
(1ec8.4c34): CLR exception - code e0434352 (first chance)
'System.AggregateException hit'
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
KERNELBASE!RaiseException+0x68:
00007ffe`6f8c1f28 488b8c24c0000000 mov rcx,qword ptr [rsp+0C0h]

ss:00000007`5d17b900=0000ec5c4ecd9f7d

VIEWING THE CONTENTS OF AN EXCEPTION

You can use the Print Exception command (!pe) to see the AggregateException.
The command will output another command so you can see the NullReference-
Exception. The following listing shows what this might look like.

0:000> !pe
Exception object: 00000151b0e54230
Exception type: System.AggregateException
Message: One or more errors occurred.
InnerException: System.NullReferenceException,
 Use !PrintException 00000151b0e51a38 to see more.
StackTrace (generated):
<none>
StackTraceString: <none>
HResult: 80131500
0:000> !PrintException 00000151b0e51a38
Exception object: 00000151b0e51a38
Exception type: System.NullReferenceException
Message: Object reference not set to an instance of an object.
InnerException: <none>
StackTrace (generated):
 SP IP Function
 000000075D17E070 00007FFDD54E22BF

SqliteDal!SqliteDal.SqliteScmContext.CreateOrder(ScmDataAccess.Order)+0x
19f

StackTraceString: <none>
HResult: 80004003

VIEWING THE STACK AND LOCAL VARIABLES ON THE CURRENT THREAD

Because the debugger is paused at the point when the exception was thrown, you can
view the current stack. This will also show the local variables for each method.

 To do this, use the command !clrstack -a. It will produce output like the
following.

Listing 8.9 Printing an exception and an inner exception

Resume
after access
violation

This is where
you hit the
Aggregate-
Exception.

Gives you the command
to see the inner exceptions

Command to see
inner exception

Stacks have offsets
instead of line numbers.

P

P
Su

P
Pa

Va
P

168 CHAPTER 8 Debugging

0:000> !clrstack -a
OS Thread Id: 0x4c34 (0)
 Child SP IP Call Site
000000075d17db70 00007ffe34f28b28 [FaultingExceptionFrame: 000000075d17db70]
000000075d17e070 00007ffdd54e22bf

SqliteDal.SqliteScmContext.CreateOrder(ScmDataAccess.Order)
 PARAMETERS:
 this (0x000000075d17e200) = 0x00000151b0e15b18
 order (0x000000075d17e208) =0x00000151b0e35818
 LOCALS:
 0x000000075d17e1d8 = 0x00000151b0e3ac08
 0x000000075d17e1d0 = 0x0000000000000000
 0x000000075d17e1c8 = 0x0000000000000000
 0x000000075d17e1c0 = 0x00000151b0e51a38

000000075d17e200 00007ffdd54b0cde ScmConsole.Program.Main(System.String[])
 PARAMETERS:
 args (0x000000075d17e2c0) = 0x00000151b0df3558
 LOCALS:
 0x000000075d17e298 = 0x00000151b0df3570
 0x000000075d17e290 = 0x00000151b0e15b18
 0x000000075d17e288 = 0x00000151b0e35608
 0x000000075d17e280 = 0x00000151b0e2cd38
 0x000000075d17e278 = 0x00000151b0e35818

000000075d17e4e8 00007ffe34f923f3 [GCFrame: 000000075d17e4e8]
000000075d17e9c8 00007ffe34f923f3 [GCFrame: 000000075d17e9c8]

DUMPING AN OBJECT’S CONTENTS

To view a .NET object, run the !do command with the object pointer. The following
listing shows the output when viewing theOrder object.

0:000> !do 0x00000151b0e35818
Name: ScmDataAccess.Order
MethodTable: 00007ffdd5357c98
EEClass: 00007ffdd54a7ee8
Size: 72(0x48) bytes
File: ...\netcoreapp2.0\win10-x64\publish\ScmDataAccess.dll
Fields:
 Type Value Name
 System.Int32 1 <Id>k__BackingField
 System.Int32 1 <SupplierId>k__BackingField
...taAccess.Supplier 00000151b0e35608 <Supplier>
 System.Int32 0 <PartTypeId>k__BackingField
...taAccess.PartType 0000000000000000 <Part>k__BackingField
 System.Int32 10 <PartCount>
 System.DateTime 00000151b0e35840 <PlacedDate>k__BackingField
...Private.CoreLib]] 00000151b0e35848 <FulfilledDate>k__BackingField

Listing 8.10 Selected output from the !clrstack command

Listing 8.11 Viewing the Order object (elided)

Pointer to the
SqliteScmContext objectointer to the

Order object
Pointer to the
SqliteTransaction object

Pointer to the
NullReferenceException
bj t

Pointer to the
SampleScmDataFixture object

Pointer to the
SqliteScmContext object

ointer to the
pplier object

ointer to the
rtType object Pointer to the

Order object

DumpObject command with
pointer to Order objectType

name

Pointer to
Supplier object

lue of the
artCount
property

169SOS

Va
P

 Type VT Value Name
 System.Int32 1 1 <Id>k__BackingField
 System.Int32 1 1 <SupplierId>k__BackingField
...taAccess.Supplier 0 00000151b0e35608 <Supplier>
 System.Int32 1 0 <PartTypeId>k__BackingField
...taAccess.PartType 0 0000000000000000 <Part>k__BackingField
 System.Int32 1 10 <PartCount>
 System.DateTime 1 00000151b0e35840 <PlacedDate>
...Private.CoreLib]] 1 00000151b0e35848 <FulfilledDate>k__BackingField

VALUE VS. REFERENCE TYPES PartCount is a value type in C#, which means
the value is held in memory directly. Supplier is a reference type, which is
why you get a pointer value. A C# struct is also considered a value type, but in
memory it’s a pointer, as you can see from the PlacedDate property. The VT
column indicates 1 for a value type and 0 for a reference type. If you try !do
on the PlacedDate pointer, it won’t work.

HOW TO VIEW AN ARRAY If you want to view an array, like the arguments
passed to Program.Main, use the !da command instead.

EXAMINING THE REST OF THE MANAGED MEMORY HEAP

All of these commands are powerful, but they’re not providing much of an advantage
over what the Visual Studio debuggers do. There’s an area where SOS really shines,
though, and it’s when you care about what’s in memory besides what’s on the current
thread. To see what I mean, try executing !dumpheap -stat. You’ll see every .NET
object in memory grouped by type and ordered by how much memory they take up.
This includes objects created by the SQLite library, the dependency-injection library,
and .NET Core.

 To see this in action, try executing the following command.

0:000> !dumpheap -type OutOfMemory
 Address MT Size
00000151b0dc10e0 00007ffe337a02f8 152

Statistics:
 MT Count TotalSize Class Name
00007ffe337a02f8 1 152 System.OutOfMemoryException
Total 1 objects

If you’re looking at memory to find all the exceptions (!dumpheap -type Excep-
tion), you’ll always find OutOfMemoryException. .NET creates this exception in
memory up front, because in the event that you do run out of memory, it won’t be able
to allocate the memory to create the OutOfMemoryException. Instead, it will throw
the one it created earlier. Creating a stack trace will also take memory, so you won’t get
a stack trace for the OutOfMemoryException, but that’s typically not a problem.

Listing 8.12 Using the !dumpheap command with a type filter

Pointer to
Supplier
object

lue of the
artCount
property DateTime is also

a value type.

Command to run,
case-sensitive

Address of
object found

Found a type with
OutOfMemory in the name

170 CHAPTER 8 Debugging
WHERE TO LEARN MORE ABOUT THE CDB COMMANDS

After you’ve loaded SOS, you can get a full list of SOS commands by running the
!help command. You can similarly get more detailed help on a command, like this:
!help dumpheap.

 Commands that don’t start with an exclamation mark (!) are part of CDB, and
they can be a little archaic. There’s a good quick reference for managed code debug-
ging called “WinDbg cheat sheet” at http://mng.bz/u7Ag. The reference is a bit old
(it still refers to mscorwks, which is pre-.NET Framework 4.0) but still relevant.

8.4.3 LLDB

LLDB is a debugger that’s part of the larger LLVM project, which is a collection of
modular compiler and toolchain technologies. LLVM is used by Xcode, the integrated
development environment for developing Mac and iOS applications.

USING LLDB ON A MAC

If you’re using a Mac, the easiest way to install LLDB is to install Xcode.

SOS ON LLDB IS HARD TO GET WORKING Working with SOS and LLDB on a Mac
is seriously complex. It requires that you build your own version of the .NET
Core CLR so that you can get an SOS LLDB plugin that works with the ver-
sion of LLDB you’re using. To get the .NET Core team to fix this issue, vote
on GitHub on the coreclr issues page: http://mng.bz/r50R.

You can also attempt to install LLDB with Homebrew with this command:

brew install llvm --with-lldb

When attempting this command, Homebrew will first point you to a page that tells
you how to install the code-signing certificate for LLDB. As mentioned in the warning,
though, the next step is to build the Core CLR code, which will build the SOS plugin
for LLDB. Assuming you did all these steps, you’ll have a file called libsosplugin.dylib.
Use the plugin load command in LLDB, followed by the full path of the libsosplu-
gin.dylib file to install the plugin.

 Given the complexities of this method, I recommend installing Xcode instead.
Xcode is free and installs LLDB without much difficulty.

Debugging unit tests with CDB
If you’re interested in trying to debug the unit tests, you can use a CDB command like
this:

cdb.exe -o dotnet test --no-build --no-restore

That command starts CDB and launches dotnet test without restoring or building
and debugging all the child processes.

You’ll have to resume a few breaks to get to the AggregateException, so you
need to pay attention to the output and stack at each break to know where you are.

http://mng.bz/u7Ag
http://mng.bz/r50R

171Additional resources
USING LLDB ON LINUX

On Linux, use the following command to install LLDB:

sudo apt install lldb-3.5

To test that LLDB is installed, run ./lldb from the terminal. It should give you a
prompt like this: (lldb).

 LLDB doesn’t have a command that breaks on module load, so you’ll need to add
a Console.ReadLine to the test application. Make it the first line in the Main
method in Program.cs. Then go to the publish folder for the ScmConsole application,
and execute the application. It should wait for you to press Enter before continuing
on with the program.

 At this point you can start LLDB in another terminal and attach to it. But first,
you’ll need the process ID. Use the following command to get the process ID:

ps -eclx | grep 'ScmConsole' | awk '{print $2}' | head -1

Now start LLDB and use the following command to attach to the process:

process attach -p [processid]

Now you’ll need to locate the libsosplugin.so file. Open a new terminal and run the
following command to find it:

find /usr -name libsosplugin.so

You may see multiple versions of this file. Choose the one that matches the .NET SDK
version you’re using, which is usually the latest one. Back in LLDB, enter the com-
mand plugin load followed by the full path of libsosplugin.so.

 Now you can try the following sequence of commands, just like you did in section
8.4.2 on WinDBG:

!soe -create System.AggregateException
process continue
!pe
!dumpheap -type OutOfMemory

Additional resources
SOS is addictive. It’s especially useful when you’re trying to diagnose an issue on a
production server. You won’t want to set breakpoints, but you can get a memory dump
of the process and copy it to your workstation for analysis. Having access to all of the
.NET objects in memory gives you all kinds of power. If you’re interested in learning
more about debugging .NET, check out some of these resources:

 Run the help command in SOS (!help in WinDBG or soshelp in LLDB).
 CLRMD (https://github.com/microsoft/clrmd)—Allows you to write .NET

Code to debug processes.

Replace processid with the process
from the previous command.

https://github.com/microsoft/clrmd

172 CHAPTER 8 Debugging
 SOSEX (http://www.stevestechspot.com/)—A library for WinDBG like SOS,
but with even more powerful commands.

 MEX (http://mng.bz/cFP4)—A library for WinDBG like SOS and SOSEX, but
with yet more powerful commands.

 Tess Ferrandez’s blog (http://mng.bz/D9T1)—A great starting resource for
tips and techniques on using SOS.

 WinDBG cheat sheet: http://mng.bz/u7Ag.

Summary
In this chapter you learned about the various tools for debugging .NET Core applica-
tions. These are some key concepts from this chapter:

 Many of the debugging tools available for .NET Core are free and powerful.
 The Visual Studio family of debuggers has similar capabilities on Windows,

Mac, and Linux.
 .NET Core provides the SOS extension, which can be used in the command-

line debuggers LLDB and WinDBG.

You also used a few techniques to debug your application:

 Debugging tests from Visual Studio editors
 Wrapping an exception in an AggregateException if the catch block does

work that will lose the stack trace
 Creating a self-contained application when debugging from the console,

because it’s easier to debug than dotnet test or dotnet run
 Using WinDBG’s sxe ld command to stop when the coreclr module is loaded,

so you can load SOS and set a breakpoint

If you’re a .NET Framework developer, you’re probably used to Visual Studio and its
powerful debugging capabilities. In this chapter, you learned that those same capabil-
ities are available in .NET Core. We also explored some other options when develop-
ing on Mac and Linux. Command-line debuggers give you the power to work with a
memory dump or via terminal or SSH, which comes in handy when a bug only hap-
pens in production.

 In the next chapter, we’ll explore how to test and analyze the performance of your
.NET applications.

http://www.stevestechspot.com/
http://mng.bz/cFP4
http://mng.bz/D9T1
http://mng.bz/u7Ag

Performance and profiling
Premature optimization is the root of all evil.

 — Sir C. Antony R. Hoare

This quote by Sir Tony Hoare, popularized by Donald Knuth, is perhaps the most
misunderstood guidance for writing applications that perform well. Optimizations,
in this context, refer to CPU cycle counting and tuning low-level operations. Pro-
grammers love to do these things, but they can often get lost in the minutiae and
miss the big picture. Sir Tony wasn’t trying to tell us to forgo considering perfor-
mance when designing our applications. He was warning us against getting mired
down in optimizing the wrong things.

 The Bing search engine has an internal plugin system. Teams build services
(plugins) that receive the search query sent by the user, and they must provide a

This chapter covers
 Measuring performance with the

xUnit.Performance library

 Profiling with PerfView

 Options on Linux for performance profiling
173

174 CHAPTER 9 Performance and profiling
response within a certain time limit. If the service responds too slowly, the Bing infra-
structure notifies the team of the performance issue and turns off the plugin. In order
to provide a new feature in Bing, teams must meet the performance criteria.

LEARN MORE ABOUT .NET PERFORMANCE If you want to learn more about per-
formance from one of the engineers that built the Bing system, seek out Ben
Watson’s book, Writing High-Performance .NET Code (Ben Watson, 2014).

Let’s contemplate how you’d build a new feature in this environment. You wouldn’t
start by writing code and optimizing blindly. You’d start by measuring everything.
What data store provides the fastest response while still providing the functionality
you need? Where are the bottlenecks as scale increases? What are all the components
in your service, and how much time do they take to respond?

Good perf does not just happen. You have to plan, and to plan you have to measure.
— Vance Morrison

In this chapter, we’ll explore how you can measure and analyze performance in .NET
Core. Every application works differently, so it’s up to the developers to determine
performance targets. There’s no “go faster” button in software development, which is
why measurement is paramount. We’ll go through some examples of identifying poor-
performing code, analyzing why it’s slow, and making iterative adjustments.

9.1 Creating a test application
Back in chapter 3 you built a small CSV parser. In this chapter you’ll build a CSV
writer. Writing large amounts of data to files is a fairly common task for C# applica-
tions. If you want your CSV-writing library to succeed, you’ll need to outperform the
other libraries.

 First you’ll build some simple CSV-writing code. Then we’ll look at how you can
measure it.

 Start by creating a new library called CsvWriter: dotnet new library -o
CsvWriter. Create a new class called SimpleWriter, and add the following code.

using System;
using System.Collections.Generic;
using System.IO;

namespace CsvWriter
{
 public class SimpleWriter
 {
 private TextWriter target;
 private string[] columns;

 public SimpleWriter(TextWriter target)
 {

Listing 9.1 A SimpleWriter class that writes comma-separated values to a stream

175Creating a test application
 this.target = target;
 }

 public void WriteHeader(params string[] columns)
 {
 this.columns = columns;
 this.target.Write(columns[0]);
 for (int i = 1; i < columns.Length; i++)
 this.target.Write("," + columns[i]);
 this.target.WriteLine();
 }

 public void WriteLine(Dictionary<string, string>
 values)
 {
 this.target.Write(values[columns[0]]);
 for (int i = 1; i < columns.Length; i++)
 this.target.Write("," + values[columns[i]]);
 this.target.WriteLine();
 }
 }
}

FOR THOSE NOT FAMILIAR WITH C# The params keyword allows the caller to
specify a variable number of arguments. The caller doesn’t need to create the
string array themselves—C# will do this automatically. This makes the code
easier to read. See the unit test code to find out how this is used.

Next, create an xUnit project to test the functionality of SimpleWriter. Use the com-
mand dotnet new xunit -o CsvWriterUnitTests. Copy the Marvel.csv file from
chapter 3 to the new project folder (or use the sample code that accompanies this
book). Be sure that Marvel.csv has an empty line at the end.

 Then modify the project file as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>

 <IsPackable>false</IsPackable>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk"
 Version="15.3.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio"
 Version="2.2.0" />
 <ProjectReference
 Include="../CsvWriter/CsvWriter.csproj" />
 </ItemGroup>

Listing 9.2 Modifying the project file for CsvWriterUnitTests

Specifies name and
order of columns

Dictionary has key/value
pairs with keys matching
column names

Add reference
to CsvWriter

176 CHAPTER 9 Performance and profiling
 <ItemGroup>
 <EmbeddedResource Include="Marvel.csv" />
 </ItemGroup>

</Project>

Finally, you’ll build a unit test to make sure SimpleWriter is able to produce the
same output as your original file. In the UnitTest1.cs file created with the unit test
project, add the code from the following listing.

using System;
using System.Collections.Generic;
using System.IO;
using System.Reflection;
using Xunit;
using CsvWriter;

namespace CsvWriterUnitTests
{
 public class UnitTest1
 {
 const string Marvel = "Marvel Studios";
 const string Fox = "20th Century Fox";

 [Fact]
 public void TestSimpleWriter()
 {
 var memoryStream = new MemoryStream();
 var streamWriter = new StreamWriter(memoryStream);
 var simpleWriter = new SimpleWriter(streamWriter);
 WriteMarvelCsv(simpleWriter);
 streamWriter.Flush();
 memoryStream.Seek(0, SeekOrigin.Begin);
 var streamReader = new StreamReader(memoryStream);
 var testString = streamReader.ReadToEnd();

 var refString = GetReferenceMarvelCsv();
 Assert.Equal(refString, testString);
 }

 private void WriteMarvelCsv(SimpleWriter simpleWriter)
 {
 simpleWriter.WriteHeader("Year", "Title",
 "Production Studio");
 var values = new Dictionary<string, string>();
 values["Year"] = "2008";
 values["Title"] = "Iron Man";
 values["Production Studio"] = Marvel;
 simpleWriter.WriteLine(values);
 values["Title"] = "The Incredible Hulk";
 simpleWriter.WriteLine(values);

Listing 9.3 Unit test for SimpleWriter

Embed
Marvel.csv.

Make these constants,
because they’re reused.

MemoryStream manages an
in-memory buffer for you.

Guarantees StreamWriter
has written everything to
the MemoryStream

Rewinds MemoryStream
to the beginning

Reads the contents of the
MemoryStream to a string

The params keyword on
WriteHeader will turn the
arguments into an array.

177xUnit.Performance makes it easy to run performance tests
 values["Title"] = "Punisher: War Zone";
 simpleWriter.WriteLine(values);
 values["Year"] = "2009";
 values["Title"] = "X-Men Origins: Wolverine";
 values["Production Studio"] = Fox;
 simpleWriter.WriteLine(values);
 values["Year"] = "2010";
 values["Title"] = "Iron Man 2";
 values["Production Studio"] = Marvel;
 simpleWriter.WriteLine(values);
 values["Year"] = "2011";
 values["Title"] = "Thor";
 simpleWriter.WriteLine(values);
 values["Title"] = "X-Men: First Class";
 values["Production Studio"] = Fox;
 simpleWriter.WriteLine(values);
 }

 private string GetReferenceMarvelCsv()
 {
 var stream = typeof(UnitTest1).GetTypeInfo().Assembly.
 GetManifestResourceStream(
 "CsvWriterUnitTests.Marvel.csv");
 var reader = new StreamReader(stream);
 return reader.ReadToEnd();
 }
 }
}

Run the test to make sure everything works correctly.
 Once you’ve verified that this works properly, how well does it perform? You could

put timers into the unit test, but that doesn’t provide much information, and it may
yield inconsistent results. Luckily, there’s a .NET Standard library for performance
testing called xUnit.Performance.

9.2 xUnit.Performance makes it easy to run performance tests
In test-driven development (TDD), test cases are written from requirements, and
developers iterate on the software until it passes all the tests. TDD tends to focus on
small units of code, and unit-testing frameworks (like xUnit) help developers get
quick feedback. The xUnit.Performance library offers a similar feedback loop on per-
formance. It allows you to try new things and share your performance tests and results
with others in a standardized way.

 xUnit.Performance is still in the beta stage, so it’s not as polished as xUnit. If you
find it useful, I encourage you to participate in the project (https://github.com/
Microsoft/xunit-performance). Because of the early stage of development, you’ll
need to create your own harness and get the NuGet packages from a different NuGet
feed (chapter 12 has more on NuGet feeds).

Reads the embedded
Marvel.csv file

https://github.com/Microsoft/xunit-performance
https://github.com/Microsoft/xunit-performance

178 CHAPTER 9 Performance and profiling
 Start by creating a file called nuget.config in the parent folder of your projects with
the following contents.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <packageSources>
 <add key="dotnet-core" value=
 "https://dotnet.myget.org/F/dotnet-core/api/v3/index.json" />
 </packageSources>
</configuration>

Then, create a new console project called CsvWriterPerfTests with the command dot-
net new console -o CsvWriterPerfTests. Modify the project file to include a ref-
erence to xUnit.Performance, as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="xunit.performance.api" Version="1.0.0-*" />
 </ItemGroup>
</Project>

The Program.cs file will serve as the harness for running the performance tests. With
regular xUnit, you don’t have to do this because an entry point is provided via the
xunit.runner.visualstudio package. Fortunately, as the following listing shows, creating
the harness is simple.

using System.Reflection;
using Microsoft.Xunit.Performance.Api;

namespace CsvWriterPerfTests
{
 class Program
 {
 static void Main(string[] args)
 {
 using (var harness = new XunitPerformanceHarness(args))
 {

Listing 9.4 nuget.config file with local feed

Listing 9.5 Add reference to xUnit.Performance in the CsvWriterPerfTests project file

Listing 9.6 Program.cs modified to start the xUnit.Performance test harness

The dotnet-core myget
feed has beta projects.

179xUnit.Performance makes it easy to run performance tests
 var entryAssemblyPath = Assembly.GetEntryAssembly().Location;
 harness.RunBenchmarks(entryAssemblyPath);
 }
 }
 }
}

Now, create a performance test. Writing a performance test is a bit different than writ-
ing a unit test. The performance test will run many iterations and compute averages,
because factors beyond your control can affect the measurements from one execution
to the next. Also, you need to consider that the memory use of the test code can affect
the measurement of the product code, because the garbage collector will pause
threads regardless of where they are.

 You know that your code is functionally correct, so you don’t need to verify the out-
put during a performance test. But keep in mind that code, especially multithreaded
code, can produce inconsistent results under stress. To detect this, you can write stress
tests. Stress tests usually run for long periods of time (hours to days) and try to simu-
late heavy user load. For performance testing, we generally only care about speed.

 Add a class called PerfTests with the following code.

using System.Collections.Generic;
using System.IO;
using System.Text;
using Microsoft.Xunit.Performance;
using CsvWriter;

namespace CsvWriterPerfTests
{
 public class PerfTests
 {
 [Benchmark(InnerIterationCount=10000)]
 public void BenchmarkSimpleWriter()
 {
 var buffer = new byte[500000];
 var memoryStream = new MemoryStream(buffer);
 var values = new Dictionary<string, string>();
 values["Year"] = "2008";
 values["Title"] = "Iron Man";
 values["Production Studio"] = "Marvel Studios";

 foreach (var iteration in Benchmark.Iterations)
 {
 using (var streamWriter = new StreamWriter(
 memoryStream, Encoding.Default, 512, true))
 {
 using (iteration.StartMeasurement())
 {
 var simpleWriter = new SimpleWriter(streamWriter);

Listing 9.7 PerfTests class with a test of the SimpleWriter class

Tells the harness to
search for tests in
the current assembly

Number of lines you’ll
write to the CSV

Creates a static memory
buffer ahead of time

Preps the dictionary
ahead of time

Creates StreamWriter
outside of measurement

512 is the buffer size for
the StreamWriter; “true”
leaves the stream open.

180 CHAPTER 9 Performance and profiling
 simpleWriter.WriteHeader("Year", "Title", "Production Studio");
 for (int innerIteration = 0;
 innerIteration < Benchmark.InnerIterationCount;
 innerIteration++)
 {
 simpleWriter.WriteLine(values);
 }
 streamWriter.Flush();
 }
 }
 memoryStream.Seek(0, SeekOrigin.Begin);
 }
 }
 }
}

Use the following command to execute the performance test:

dotnet run --perf:collect stopwatch

As part of the test, xUnit.Performance will write the test results table to the console. It
will also put the results into a CSV, a Markdown file, and an XML file. The results
should look similar to those in table 9.1.

In table 9.1, the measurements are in milliseconds. On average, SimpleWriter only
takes 2.229 milliseconds to write 10,000 lines.

 Let’s see what happens when you write to a file instead of memory. Add another
method to PerfTests.cs, as follows.

What is StopWatch?
In the System.Diagnostics namespace, there’s a StopWatch class. It has Start
and Stop methods and a set of properties for getting the elapsed time. The stop-
watch is implemented on all operating systems. When running performance tests on
non-Windows platforms, only timing operations via StopWatch are supported, so
you only get the times for the tests. If you’re running on Windows, other facilities are
available, such as kernel ETW events and CPU performance counters that can give
you in-depth data, such as CPU branch mispredictions or how often you’re hitting the
L2 cache. That kind of performance data is beyond the scope of this book.

Table 9.1 Test results from performance benchmark of SimpleWriter with 10k lines written
 to memory

Test Name Metric Iterations AVERAGE STDEV.S MIN MAX

BenchmarkSimpleWriter Duration 100 2.229 0.380 1.949 5.077

Writes many
lines to the CSV

Rewinds the stream
before the next iteration

Does only stopwatch
timing of the iterations

181xUnit.Performance makes it easy to run performance tests

m
tim

o

[Benchmark(InnerIterationCount=10000)]
public void BenchmarkSimpleWriterToFile()
{
 var values = new Dictionary<string, string>();
 values["Year"] = "2008";
 values["Title"] = "Iron Man";
 values["Production Studio"] = "Marvel Studios";
 int outerIterations = 0;
 foreach (var iteration in Benchmark.Iterations)
 {
 var fileStream = new FileStream(
 $"tempfile{outerIterations++}.csv",
 FileMode.Create,
 FileAccess.Write);
 using (var streamWriter = new StreamWriter(fileStream,
 Encoding.Default, 512, false))
 {
 using (iteration.StartMeasurement())
 {
 var simpleWriter = new SimpleWriter(streamWriter);
 simpleWriter.WriteHeader("Year", "Title", "Production Studio");
 for (int innerIteration = 0;
 innerIteration < Benchmark.InnerIterationCount;
 innerIteration++)
 {
 simpleWriter.WriteLine(values);
 }
 streamWriter.Flush();
 }
 }
 }
}

START LOW WITH INNERITERATIONCOUNT When first trying this, set the Inner-
IterationCount low and increase it based on the test results. If your disk is
slow, you may wait a long time for the performance test to finish.

Running this test with a couple of different solid state disks (SSDs), I got results like
those shown in table 9.2.

Listing 9.8 Measures the performance of writing to a file instead of memory

Table 9.2 Test results from performance benchmark of SimpleWriter with 10k lines written to
 memory and files

Test Name Metric Iterations AVERAGE STDEV.S MIN MAX

BenchmarkSimpleWriter Duration 100 2.469 0.709 1.954 4.922

BenchmarkSimpleWriterToFile Duration 100 3.780 0.985 2.760 9.812

Start off with a low count
and increase based on
time for inner loop

Writes to a different
file for each iteration

Overwrites file if
it already exists

false closes the stream at
the end of the using block.

Doesn’t
easure the

e it takes to
pen the file

Makes sure everything’s
written to the file

182 CHAPTER 9 Performance and profiling
Compare these results with table 9.1. It’s common for there to be fluctuations in per-
formance measurements. Some techniques for handling this include removing all
unnecessary processes from the machine running the tests, running the tests multiple
times, and increasing the number of iterations.

 One pattern I noticed is that writing to files does have an impact, but not as big an
impact as I originally thought. Try the test again with the files already created, and you’ll
see that the impact is even less. This tells me that if I need to improve the performance
of this library, optimizing the CSV-writing code rather than the file-writing code will
have the most impact, because it uses the biggest percentage of the overall time.

 Test this out by making a slight tweak to the SimpleWriter class. Add the follow-
ing method.

public void WriteLine(params string[] values)
{
 this.target.WriteLine(string.Join(",", values));
}

This method assumes the user will provide the strings in the correct order.
 You’ll also need to add a couple new benchmarks to the PerfTests class, as follows.

[Benchmark(InnerIterationCount=10000)]
public void BenchmarkSimpleWriterJoin()
{
 var buffer = new byte[500000];
 var memoryStream = new MemoryStream(buffer);

 foreach (var iteration in Benchmark.Iterations)
 {
 using (var streamWriter = new StreamWriter(memoryStream,
 Encoding.Default, 512, true))
 {
 using (iteration.StartMeasurement())
 {
 var simpleWriter = new SimpleWriter(streamWriter);
 simpleWriter.WriteHeader("Year", "Title", "Production Studio");
 for (int innerIteration = 0;
 innerIteration < Benchmark.InnerIterationCount;
 innerIteration++)
 {
 simpleWriter.WriteLine(
 "2008", "Iron Man", "Marvel Studios");
 }
 streamWriter.Flush();
 }
 }
 memoryStream.Seek(0, SeekOrigin.Begin);

Listing 9.9 Adding method to SimpleWriter

Listing 9.10 Adding benchmark tests to the PerfTests class

Writes to
memory buffer

Writes the strings using
the join method

183xUnit.Performance makes it easy to run performance tests
 }
}

[Benchmark(InnerIterationCount=10000)]
public void BenchmarkSimpleWriterToFileJoin()
{
 int outerIterations = 0;
 foreach (var iteration in Benchmark.Iterations)
 {
 var fileStream = new FileStream(
 $"tempfile{outerIterations++}.csv", FileMode.Create, FileAccess.Write);
 using (var streamWriter = new StreamWriter(fileStream,
 Encoding.Default, 512, false))
 {
 using (iteration.StartMeasurement())
 {
 var simpleWriter = new SimpleWriter(streamWriter);
 simpleWriter.WriteHeader("Year", "Title", "Production Studio");
 for (int innerIteration = 0;
 innerIteration < Benchmark.InnerIterationCount;
 innerIteration++)
 {
 simpleWriter.WriteLine(
 "2008", "Iron Man", "Marvel Studios");
 }
 streamWriter.Flush();
 }
 }
 }
}

With these new tests, I got the results shown in table 9.3.

PERFORMANCE TESTS ARE IMPACTED BY EXTERNAL FACTORS The Max measure-
ment for BenchmarkSimpleWriter is 13.312 milliseconds, which is much
higher than any other measurement. If you look at the order in which the
tests were run, you’ll notice this test came last. The likely explanation for the
high maximum latency is that the garbage collector kicked in. Some ways to
handle this would be randomizing the order of the tests, which would require
a change to xUnit.Performance, or increasing the number of iterations to
absorb the GC cost.

Table 9.3 Test results from performance benchmark of SimpleWriter

Test Name Metric Iterations AVERAGE STDEV.S MIN MAX

BenchmarkSimpleWriter Duration 100 2.529 1.646 1.706 13.312

BenchmarkSimpleWriterJoin Duration 100 1.259 0.315 0.918 2.250

BenchmarkSimpleWriterToFile Duration 100 3.780 0.985 2.760 9.812

BenchmarkSimpleWriter-
ToFileJoin

Duration 100 2.122 0.689 1.429 6.985

Tests for writing
to file.

Writes to
file stream

Writes the strings
using the join method

184 CHAPTER 9 Performance and profiling
As you can see from the test results, using the new WriteLine method in Simple-
Writer has a dramatic impact on performance. There are two changes in the
method. One is that it doesn’t use a dictionary, and the other is that it uses
string.Join instead of a custom loop to write the fields. Which change had the
most impact? You can try to determine this by using a profiler like PerfView.

9.3 Using PerfView on .NET Core applications
PerfView is a Windows application invented by Vance Morrison, a performance leg-
end at Microsoft. He actively maintains the project on GitHub (https://github.com/
Microsoft/perfview) and has all kinds of tutorials on how to use it and how to under-
stand performance in general.

 PerfView works by recording Event Tracing for Windows (ETW) events. ETW is a
powerful feature built into the Windows operating system that gives you all kinds of
information on the operation of your computer. In chapter 10 you’ll learn how to
emit your own ETW events. But for now, there are plenty of ETW events in .NET Core
and the Windows kernel to help you diagnose your performance issues.

9.3.1 Getting a CPU profile

A profile gives you a window into what exactly your application is doing when it’s run-
ning. You could get a memory profile to see how memory is being allocated and freed,
or you could get a disk profile to see disk reads and writes.

 CPU profiles tell you how your application uses the processor. In most cases, this
means recording what code is executing to see what methods take the most CPU or
appear most often in the stack. PerfView is a free tool for CPU profiles and much more.

You can download PerfView from the GitHub site (https://github.com/Microsoft/
perfview). PerfView is a single exe file that has no install. Just copy it to a machine and
run it as administrator. You can run your application using the Collect > Run menu
option, as shown in figure 9.1.

What’s a stack?
Suppose you have a program with a Main method. It calls the WriteLog method,
which calls a ToString method. The stack in this scenario is Main→Write-
Log→ToString with ToString on the top and Main at the bottom of the stack.

Your high-level, object-oriented language is doing some work under the covers to
make each method call. Part of that work is to push the contents of the CPU registers
to the stack before making the jump to the method (flash back to your assembly class
in college). This is why the term stack is used to refer to the chain of method calls.

Each level of the stack (called a frame) needs some uniquely identifying information.
Programs are divided into assemblies, assemblies into classes (and other types),
and classes into methods. Most profilers will write each level of the stack with
assembly, class name, and method name. Line-number information usually isn’t
available in CPU profiles.

https://github.com/Microsoft/perfview
https://github.com/Microsoft/perfview
https://github.com/Microsoft/perfview
https://github.com/Microsoft/perfview

185Using PerfView on .NET Core applications
Figure 9.1 PerfView Run dialog

CIRCULAR PROFILING Profiles can create big files on disk very quickly. This is
OK, as long as the thing you’re trying to profile happens quickly. But if it
takes some time to reproduce the issue, you could end up with a really large
profile that takes a long time to analyze. This is where circular profiling
comes in handy. If you specify that you only want 500 MB in your profile, only
the latest 500 MB will be kept on disk. That allows you to start the profiler,
wait until the performance issues reproduce, and then stop the profiler with
the resulting profile being no larger than 500 MB.

Try to run your performance tests in PerfView. Close the Run dialog box, and find the
text box directly below the File menu. Enter the full path to the CsvWriterPerfTests
folder in this text box. It should update the tree below the text box to show the con-
tents of that folder (without files).

Opens the Run dialog
box, which is used to
profile a specific
command.

Collect is similar
to Run, except it
collects all process
on the machine.

Lots of help
is available.

Memory allows
you to view
memory heaps.

Zips the resulting
profile—good for
copying to another
machine, but not
necessary in your
case.

Circular means
you only keep the
last x MB of a profile.

Merging reduces the size of
the profile by merging all
the ETW files together. This
isn’t necessary if you’re not
copying to another machine.

If the performance issue is that
the CPU seems blocked, rather
than too busy, thread time will
help you see what’s happening.

The command to run for
profiling—the profile collection
is still machine-wide, but it stops
when the command finishes.

There are plenty of advanced
options for when you’re more
familiar with PerfView.

186 CHAPTER 9 Performance and profiling
Next, go to File > Set Symbol Path. As shown in figure 9.2, add the full path to the
.pdb files built under the CsvWriterPerfTests folder.

 The other symbol path is the Microsoft Symbol Server. If you don’t see it in the text
box, click the Add Microsoft Symbol Server button.

WHAT ARE SYMBOLS FOR? When debugging or profiling, you’ll use stacks to
determine what code is executing. Each level (frame) of the stack indicates
the assembly, class, and function or method. But sometimes this isn’t enough
information to determine the exact line of code. By matching symbols, you’ll
also be able to see the filename and line number of each stack frame. Keep in
mind that stacks from .NET assemblies will show class and method names
without symbols, but frames from natively compiled assemblies need symbols
to show class and method names.

Next, open the Collect > Run menu option and fill out the dialog box as shown in fig-
ure 9.3.

Figure 9.3 PerfView Run dialog box with commands to run your xUnit.Performance tests

Figure 9.2 PerfView Set
Symbol Path dialog

Set the command field to the
dotnet run command you
used in the previous section.

Turn off zip. Turn off merge. Click the Run Command button.

The data file is
where the profile
data will be stored.

Current directory should be
where the CsvWriterPerfTests
code is located.

187Using PerfView on .NET Core applications
 Once the profiling is com-
plete, the Run dialog box will
close, and the tree view on the
left side of the main window
will update to include your
profile (see figure 9.4).

Figure 9.4
PerfView profile tree

9.3.2 Analyzing a CPU profile

Double-click the CPU Stacks item in the tree. PerfView will then let you pick the pro-
cess you want to analyze—remember that a PerfView profile is machine-wide, so all
CPU stacks from all processes active on the machine during the profile are recorded.
The dotnet run command executes several child processes, which can make it tricky
to find the right one. The CommandLine portion will help greatly. Figure 9.5 shows
what the Select Process window looks like.

Figure 9.5 PerfView Select Process dialog box

The Memory Group folder
has useful information on
allocations and garbage
collections.

The Advanced Group is useful
if you think you’re I/O bound,
have too many exceptions,
have pinned too many objects
in memory, and so on.

CPU Stacks has the CPU
profile you’re looking for.

There are multiple dotnet processes—notice
the parent process ID is 12624, which is
the dotnet run command you executed.

Notice also that MSBuild
is executed to restore
and build the project.

The dotnet exec command of CsvWriterPerfTests.dll
is the one that actually runs our perf tests.

188 CHAPTER 9 Performance and profiling
IDENTIFYING YOUR APPLICATION’S PROCESS NAME To make it easier to identify
the process, you can create a self-contained application, like you did in chap-
ter 8. A self-contained application’s process will have the assembly’s name
instead of dotnet, such as CsvWriterPerfTests.exe.

Once you pick the process, you’ll see the CPU Stacks window. It won’t make much
sense at first because PerfView attempts to filter it to only what you need. You’ll need
to change the filters to get a better view of the data. Figure 9.6 shows what the filters at
the top of the stack window are for.

Figure 9.6 PerfView CPU Stacks filters

Inclusive vs. exclusive costs
Every method contains some instructions that run on the CPU. The amount of time
spent executing the instructions within a particular method is considered the exclusive
cost of that method. Because that method is likely called multiple times, profiles sum
up the total time and show that as the exclusive cost of the method. Costs are usually
presented as percentages of the total CPU cost for the whole profile.

The inclusive cost of a method is its exclusive cost plus the cost of any methods it
calls. Suppose you have a method, A, that calls methods B and C. The exclusive
costs for A, B, and C are 1%, 5%, and 6% respectively. Let’s assume that B and C
don’t call anything else, so their inclusive costs are equivalent to their exclusive
costs. That makes method A’s inclusive cost 12%—1% exclusive for itself, plus 5%
and 6% for the inclusive costs of B and C.

Group patterns
group stack
frames together.

Exclusive patterns cut out
stacks with stack frames
matching any of the patterns.

Start and End define the time
period to display from the profile,
measured in milliseconds.

Fold percentage should
fold stacks with an inclusive
cost below the threshold up
into the parent stack (but
doesn’t work very well).

Fold patterns fold
stack frames up into
their parents.

Inclusive patterns
specify that only
stacks with all the
patterns are shown.

189Using PerfView on .NET Core applications
It may take some time to understand the difference between group, fold, include, and
exclude patterns. You’ll use them to filter down to a couple of tests so you can get a
better feel for how they work.

 The first step is the group pattern. The default group pattern is very restrictive, as
it will try to look for only your code. It does this by looking for the name of the appli-
cation that you ran (dotnet), which isn’t helpful in this case. Setting the group pat-
tern takes a bit of trial and error.

 Start by clearing the field and pressing Enter— that will show all stacks. Switch over
to the CallTree tab, and you’ll see a deep set of stacks. I start by looking for assemblies
I’m not interested in and adding them to the group pattern.

 In this case, I found that using xunit%->xunit;clr%=>coreclr worked best. I
wanted to hide the xUnit library because I’m not interested in its internals, and it has
pretty deep stacks. The -> groups everything together as xunit. For CLR (common
language runtime) libraries, I cared about the entry point, but nothing inside. To see
the entry point but nothing else inside the group, you use the => command instead of
the ->. You can add as many of these as you like, separated by semicolons. Keep in
mind that they run in order from left to right.

 The next filter is the fold patterns. The default fold pattern, ntoskrnl!%Service-
CopyEnd, can remain. I add to that a pattern that folds the threads: ^Thread. For this
profile, I’m not interested which thread a particular test was run on. Folding gets it out
of the stack and simplifies the stack tree.

 For .NET Core profiles, I found that two other stacks were uninteresting and added
these entries to the fold patterns: system.private.corelib%;system.runtime
.extensions%. I folded these because I don’t have the symbols for them, and it helped
to declutter the stack.

 PerfView has already set the inclusive pattern filter to the process ID that you
picked. If you were to clear this filter, it would show all stacks from all processes. For
this example, we’ll focus on the two tests that wrote to files. To do this, add this pat-
tern to the inclusive patterns: csvwriterperftests!CsvWriterPerfTests

.PerfTests.BenchmarkSimpleWriterToFile.
 Right-click somewhere on the stack and choose Lookup Warm Symbols from the

menu. At this point, you should have a good view of the stack involved in running the
two file tests. Figure 9.7 shows how this could look.

WHAT ARE CPU STACKS, AND HOW ARE THEY MEASURED? The CPU Stacks win-
dow measures percentages based on the number of samples that appeared in
a particular stack versus the total number of samples included by the filters.
It’s not a percentage of the whole profile. A sample in this context comes from
a periodic sampling of all stacks. The default for PerfView is to take a sample
every millisecond, but this is adjustable.

190 CHAPTER 9 Performance and profiling
Notice that the two tests took the same amount of CPU time (compare the Inc column
from figure 9.7 for lines b and c), but the time spent in SimpleWriter varies greatly
(compare the Inc column for lines d and e). If you expand the stacks, you’ll see that
the file manipulation is the source of the fluctuation. By viewing the profile, you can
cancel these things out and compare the two WriteLine methods directly against each
other. The performance difference is most notable in the exclusive percentage.

 The calls to TextWriter.WriteLine and string.Join are still not visible in the
stack. This can happen if the compiler “inlines” the methods, which is an optimization
to avoid calling methods by sticking the code from one method directly into its
caller. Another reason could be the lack of symbols. Usually PerfView will show a stack
frame with a question mark (?) for any symbol it doesn’t have. The missing symbols
likely come from system.private.corelib or system.runtime.extensions.

The test method using
the dictionary writing to
files—50% inclusive time

SimpleWriter.WriteLine
method using the
dictionary—32% exclusive
time

The When column
shows when these
stacks appeared
in the profile.

The test method using the
array with a string.Join
writing to files—50%
inclusive time

SimpleWriter.WriteLine
method using the array
and string.Join—16%
exclusive time

Figure 9.7 PerfView CPU Stacks window showing the xUnit.Performance tests that write to files

191Using PerfView on .NET Core applications
Unfortunately, .NET Core symbols aren’t published to the public Microsoft symbol
store or included in their NuGet packages.

9.3.3 Looking at GC information

Back in the main PerfView window, expand the Memory Group folder in the tree and
double-click GCStats. This opens an HTML page with links at the top for each pro-
cess. Find the one with the process ID you analyzed in the CPU Stacks window. It
should look like dotnetc CsvWriterPerfTests.dll --perf:collect stop-
watch. I think the c suffixed to dotnet means child process, but that’s just a guess.

 The page includes a table of information about the garbage collections by genera-
tion, which should look similar to table 9.4.

The .NET garbage collector has three generations: 0, 1, and 2. When an object is first
allocated, it has never been through a garbage collection before, so its GC count is 0.
When the .NET GC kicks in, it will first try to collect everything that has a count of 0,
hence generation 0. Any object that still has references that are rooted, meaning it’s
being used or needs to be accessible in some way, survives the garbage collection. The
table shows the rate of survival. Survival also means an increment in GC count to 1.

 Gen 1 garbage collections are done less often and have more impact. The same
process happens for gen 2, which is the most impactful. Notice that table 9.4 has four
gen 2 collections but no gen 1 collections. This may seem a bit odd until you look at
the Induced column. Induced means that the gen 2 collection was triggered manually.
In this case, xUnit.Performance induces a gen 2 collection before each test to prevent
memory usage from one test causing a gen 2 during another test, which would skew
the results. It’s not perfect, but it does help.

 PerfView also includes some useful summary information for GC usage in the
process:

 Total CPU Time: 1,905 msec
 Total GC CPU Time: 47 msec

Table 9.4 PerfView GC rollup by generation

GC Rollup By Generation

All times are in msec.

Gen Count
Max

Pause
Max

Peak MB
Max Alloc
MB/sec

Total
Pause

Total
Alloc MB

Alloc MB/
MSec GC

Survived
MB/MSec GC

Mean
Pause

Induced

ALL 134 3.1 6.2 1,490.404 57.1 317.3 5.6 0.077 0.4 4

0 130 3.1 6.2 1,490.404 52.6 311.9 0.2 0.024 0.4 0

1 0 0.0 0.0 0.000 0.0 0.0 0.0 NaN NaN 0

2 4 1.3 3.0 455.380 4.5 5.4 0.0 0.526 1.1 4

192 CHAPTER 9 Performance and profiling
 Total Allocs : 317.349 MB
 GC CPU MSec/MB Alloc : 0.148 MSec/MB
 Total GC Pause: 57.1 msec
 % Time paused for Garbage Collection: 3.5%
 % CPU Time spent Garbage Collecting: 2.5%
 Max GC Heap Size: 6.204 MB
 Peak Process Working Set: 36.209 MB

Out of the 1,905 milliseconds of CPU time used for the performance tests, only 47
milliseconds were spent in garbage collection. This is also shown in percentages and
includes the time paused for GC. Your test only had a max heap size of 6 MB, so it’s
normal to not see a lot of impact from garbage collection.

PERFVIEW CAN ALSO BE USED FOR MEMORY INVESTIGATIONS If you suspect a
memory issue with your application, the GC Stats window is a good place to
start. PerfView also has an advanced option during collection to either sample
.NET memory allocations or record all of them. These have an impact on the
performance of the application, but they can give you all kinds of useful data
for digging into who’s allocating objects and who’s holding them.

9.3.4 Exposing exceptions

One of the nice things about taking a PerfView profile is how much it reveals about
your application that you didn’t know was going on. Take the multiple child processes
spawned by the dotnet command, or how many stack frames go to xUnit if you don’t
use a grouping. I also find it interesting to see how many exceptions are thrown and
caught without my knowing.

 Exceptions are generally bad for performance, so you don’t want them in your per-
formance-critical areas. They may be OK in other areas, although most programmers
would argue that exceptions should only be used in exceptional cases. In some cases,
an exception thrown and handled by one of your dependent libraries can reveal opti-
mizations or issues.

 PerfView has two ways to view exceptions. A PerfView profile, by default, listens to
the CLR ETW events fired when exceptions are thrown. You can view these events by
opening the Events item in the profile tree. Figure 9.8 shows the exceptions for your
xUnit.Performance test.

 The Rest column in the event grid will have the exception type and message.
Notice also that there’s a field called HasStack="true". The Events window doesn’t
show the stack, but you can see it in the Exceptions Stacks item under the Advanced
Group in the profile tree. Figure 9.9 shows the exceptions in this view.

193Using PerfView on .NET Core applications
Figure 9.8 PerfView Events window filtered to show exceptions

Set the process filter to the
process you found earlier.
PerfView will only show “dotnet”
in the dropdown, which has a lot
of exceptions. Add the process ID
to get a better picture.

This filter is on the
event name and is
case-insensitive.

Pick the Exception/Start
event to see all thrown
exceptions.

Here is a
FileNotFoundException
for an assembly.

The default group pattern
works pretty well. Remove
it to see the full stacks.

Use the CallTree to
make it easier to
visualize the stack.

Figure 9.9 PerfView Exceptions Stacks window

194 CHAPTER 9 Performance and profiling
These exceptions don’t affect the performance tests, but they give some insight into
the xUnit.Performance library.

9.3.5 Collecting performance data on Linux

Linux Perf Events has similar capability to ETW in Windows. It can capture stacks
machine-wide. Some Linux developers prefer flame graphs for viewing the data cap-
tured by Perf Events, but I find PerfView grouping and folding more powerful. Luck-
ily, PerfView has a facility for viewing Perf Events data.

 For the most up-to-date instructions on how to view Linux performance data in
PerfView, consult the help topic “Viewing Linux Data,” which is available in the Help
menu. The instructions are straightforward. Start by downloading and installing the
perfcollect script using Curl, which you learned about in chapter 7, with the fol-
lowing commands:

curl -OL http://aka.ms/perfcollect
chmod +x perfcollect
sudo ./perfcollect install

You’ll need two terminals: one to run the application, and another to collect the pro-
file. In the terminal that runs the application, you’ll need to set an environment vari-
able that tells .NET to emit symbol information. Use this command:

export COMPlus_PerfMapEnabled=1

From the other terminal, you can start the collection with the following command:

sudo ./perfcollect collect mytrace

Perfcollect doesn’t have an equivalent to PerfView’s Run option. You’ll need to start
collection manually and use Ctrl-C to stop the collection. Because you have to write
the entry point for xUnit.Performance, you can put a Console.ReadKey() in the
Main method before the benchmark starts. Perfcollect will produce a file called
mytrace.trace.zip with the profile in it. Transfer this to your Windows machine to view
the profile in PerfView.

What is the XmlSerializers.dll for?
After executing the performance tests, xUnit.Performance produces several output
files. One of the files is an XML file with detailed test information. To produce that
file, xUnit.Performance uses the System.Xml.XmlSerializer class, which can
build the necessary components to serialize a given object graph to XML on the fly,
or the library’s developers can choose to build a serialization assembly ahead of
time. Generating the serialization assembly only works in .NET Framework at the time
of this writing.

195Summary
Additional resources
To learn more about what we covered in this chapter, see the following resources:

 PerfView—https://github.com/Microsoft/perfview
 Writing High-Performance .NET Code by Ben Watson (Ben Watson, 2014)—http://

www.writinghighperf.net/
 Vance Morrison’s blog—https://blogs.msdn.microsoft.com/vancem/

Summary
In this chapter, you learned how to write performance benchmarks and collect pro-
files. These were the key concepts we covered:

 xUnit.Performance provides a way to write performance tests similar to unit
tests.

 Measuring is the best way to understand where to focus energy on optimization.
 External factors such as the garbage collector can impact performance.
 Profiling provides greater insight into the performance of an application.
 A powerful profile viewer like PerfView helps to visualize a profile in useful ways.

These are some important techniques to remember from this chapter:

 Be careful about memory use in performance benchmark tests, as you don’t
want the tests to impact the results.

 Use group and fold patterns in PerfView to condense stacks to display only the
portions you find important.

 The perfcollect script allows you to gather profile data from Linux and ana-
lyze it in PerfView.

There are many performance tools available, including the performance tools built
into the more expensive versions of Visual Studio. Out of all the tools I’ve used,
PerfView stands out as the most powerful—and it’s free. PerfView also doesn’t hide
how it captures the performance data, so there’s no magic. That’s why I chose to focus
on it in this chapter.

 When it comes to performance benchmarks, Visual Studio provides a way to run
performance tests using unit tests, and it’s definitely worth a try. With xUnit.Perfor-
mance, you can run the tests from the command line. xUnit.Performance also has
more interesting data-collection options using ETW on Windows, but the stopwatch
method should work on all platforms. One other advantage of using xUnit.Perfor-
mance is that it’s clear what the benchmarks are for. Unit tests are typically not written
to be careful about memory and could introduce unwanted side effects when they’re
repurposed as performance tests.

https://github.com/Microsoft/perfview
http://www.writinghighperf.net/
http://www.writinghighperf.net/
https://blogs.msdn.microsoft.com/vancem/

Building world-ready
applications
You’ve built a library that is cross-platform, fast, and well-tested. Before you can
publish to NuGet and obsess over download numbers, however, you need to inter-
nationalize your application. Anything that can be exposed to the user should be in
a form the user can understand. Dates, time zones, languages, measurements, and
even sorting order depend on region and culture.

 .NET Standard includes powerful capabilities for internationalizing applica-
tions. In this chapter, you’ll learn about the recommended process for internation-
alization (and I’ll attempt to disambiguate the terms localization, globalization, and
internationalization). We’ll also explore the techniques and APIs for localization in
.NET. Let’s begin with an example application.

This chapter covers
 Making your application world-ready

 Performing a localizability review

 Localizing your application
196

197Going international
10.1 Going international
One of the companies I had the privilege of consulting for built a unique type of com-
mercial air conditioner. The idea was simple: run the air conditioner at night, when
electricity is cheap, to create a block of ice, and then use the block of ice to create cool
air during the day. Whereas a company might be interested in replacing their existing
air conditioners for one of these for the cost savings, power companies took a greater
interest because they could help flatten the power curve by moving energy use from
daytime to nighttime. But power companies also want control over the air condition-
ers so they can handle power surges, avoid brownouts, and the like. Essentially, each
block of ice is stored energy, and each air conditioner is connected to the internet so
it’s manageable by the customer and power company.

 Let’s say you’re on the development team behind the air conditioner controller.
Your company has just scored an international deal and is lining up more deals in
countries all over the world. But you realize that your application was developed with
the assumption that all your customers would be English-speaking and located in Cali-
fornia. You need to go through the process of internationalization.

10.1.1 Setting up the sample application

To try out the code in this chapter, the simplest way to set everything up is to create a
console application called ACController. To do this, create a new folder called
ACController, and run dotnet new console within that folder.

 Add a new file called TempControl.cs, as shown in the following listing. This class
will hold some temperature data measured by the air conditioner.

namespace ACController
{
 public class TempControl
 {
 public static double ExhaustAirTemp { get; internal set; }
 public static double CoolantTemp { get; internal set; }
 public static double OutsideAirTemp { get; internal set; }
 }
}

Periodically, the application will write the temperatures to the log. This is easy to simu-
late by building a Program.cs file. You’ll use Console.WriteLine to write the log
messages, as shown in the following listing.

using System;

namespace ACController
{

Listing 10.1 TempControl class holds temperature information

Listing 10.2 Program file to simulate writing a log message

198 CHAPTER 10 Building world-ready applications
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Exhaust Air Temp: " +
 TempControl.ExhaustAirTemp);
 }
 }
}

All this program does is write a string to the console. Pretend the console is your log.
 This works fine if your application only has to write the logs in English. But if your

customers don’t read English, you’ll need to give them logs in their own language.
The way this code is written, there’s no way to change the log based on the customer’s
region or culture. The code isn’t “world-ready.”

10.1.2 Making the sample application world-ready

The string Exhaust Air Temp: needs to be translated into different languages. You’ll
need to write some code that can give you the correct string to write to the log. In
.NET, the ResourceManager fills this role. The string is considered a resource, and the
ResourceManager can retrieve the right version of the string based on the region
and culture of the current user.

 The string resources need to be separated from the code. To do this, create a file
named strings.restext with the following code. It should be put in the same folder as
the project code.

ExhaustAirTemp=Exhaust Air Temp:

Next, you’ll need to modify ACController.csproj to generate a resource file from the
strings.restext file and embed it into the ACController assembly. Modify the csproj file
as follows.

<Project Sdk="Microsoft.NET.Sdk"
 InitialTargets="BuildResources">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Resx Include="strings.restext" />

Listing 10.3 String resources for the sample application

Listing 10.4 Generate a resource file from strings.restext and embed it

ExhaustAirTemp is a key you’ll
use to retrieve this string.

Calls the BuildResources
target before anything else

Includes your restext file
in the Resx item group

199Going international

 <EmbeddedResource Include="strings.resources" />
 </ItemGroup>

 <Target Name="BuildResources">
 <GenerateResource ExecuteAsTool="false"
 Sources="@(Resx)">
 </GenerateResource>
 </Target>
</Project>

The ResourceManager class isn’t able to read the restext file directly. It only reads files
in the binary .resources format. To convert the restext file into a resources file, a
MSBuild task called GenerateResource is built into .NET Core. This task will read the
set of files you give it and write out a resources file with the same name as the input file.

 The resources file then needs to be embedded into the assembly so Resource-
Manager can find it. That’s why you add the EmbeddedResource ItemGroup. Note
that the strings.resources file has to exist on disk during build. The easiest way to guar-
antee this is to create a custom target and add it to the InitialTargets list. This will
cause the resource to be generated before the build begins (also before restore begins).

MSBUILD DOESN’T DETECT RESOURCE FILE CHANGES Although MSBuild is good
at detecting a lack of changes in code files so it can skip building an assembly,
modified resources will typically not be noticed by MSBuild. You can add the
--no-incremental argument when building to get around this and ensure
the assembly is rebuilt.

Now that you have an embedded resource file, use ResourceManager to get the
string resource out of it. Modify Program.cs as follows.

using System;
using System.Reflection;
using System.Resources;

namespace ACController
{
 class Program
 {
 static void Main(string[] args)
 {
 var resMan = new ResourceManager(
 "ACController.strings",
 typeof(Program).GetTypeInfo().Assembly);
 Console.WriteLine(
 resMan.GetString("ExhaustAirTemp") +
 TempControl.ExhaustAirTemp);
 }
 }
}

Listing 10.5 File to simulate writing a log message modified to use ResourceManager

Embeds generated resource
file in the assembly

Custom MSBuild
target

ExecuteAsTool set to
“false” for .NET Core

For the GetTypeInfo
extension method

For ResourceManager

Root namespace (by default,
the assembly name) plus
resource filename

Assembly that has the embedded
resource (ACController)

Calls GetString to get the
string resource by key

200 CHAPTER 10 Building world-ready applications
SETTING THE ROOT NAMESPACE You can change the root namespace for your
assembly by adding a tag to the csproj file inside a PropertyGroup:<Root-
Namespace>ACController.Root</RootNamespace>.

At this point, you’re ready to execute dotnet run from the command prompt. After
all this work, you’ve only managed to move the string out of the C# code. But how
does this make the application world-ready? To answer that, you’ll attempt to make a
Spanish language version of your resource file.

 Let’s say a power company in Mexico has just purchased some of your air condi-
tioners. The culture code for Spanish language in Mexico is “es-MX” (for reference,
the culture code for English in the US is “en-US”). You need to create a resource file
for this culture code.

 Add a new file named strings.es-MX.restext to the project folder with the following
contents.

ExhaustAirTemp=Temp del aire del extractor:

In order for the resources file to be generated and embedded into the assembly, mod-
ify the ResX and EmbeddedResource item groups in ACController.csproj as follows.

<ItemGroup>
 <Resx Include="*.restext" />
 <EmbeddedResource Include="*.resources" />
</ItemGroup>

The wildcards let you include any .restext or .resources file in the folder, so you don’t
have to explicitly add an entry in the project file for each culture.

 After building, take a look at the files and folders generated:

 ACController/
 bin/Debug/netcoreapp2.0/
 ACController.dll
 es-MX/
 ACController.resources.dll

A subfolder named for the culture code of the embedded resource has been created,
and it contains a resources.dll file. As you may guess, this assembly only contains the
embedded string resources for the es-MX culture code. The assembly is called a satel-
lite assembly. ResourceManager will search for satellite assemblies depending on the
culture code.

Listing 10.6 String resources for the sample application for the Spanish-Mexico culture

Listing 10.7 Modify ResX and EmbeddedResource groups to support multiple files

You’re abbreviating
temperature in Spanish also.

201Going international
If you run the ACController application on a computer that’s set for the es-MX cul-
ture, you’ll see the log output in Spanish (but see the sidebar). If the computer is
using any other culture code, you’ll get English. In order to simulate being in the es-
MX culture, you can add the following code to Program.cs.

using System.Globalization;
using System.Threading;

class Program
{
 static void Main(string[] args)
 {
 var culture = CultureInfo
 .CreateSpecificCulture("es-MX");
 Thread.CurrentThread.CurrentCulture = culture;
 Thread.CurrentThread.CurrentUICulture = culture;
 var resMan = new ResourceManager(
 "ACController.strings",
 typeof(Program).GetTypeInfo().Assembly);
 Console.WriteLine(
 resMan.GetString("ExhaustAirTemp") +
 TempControl.ExhaustAirTemp);
 }
}

Setting a culture as default (neutral)
By not adding a culture code to the strings.restext filename, you’ve essentially made
this the default, or neutral, culture. Notice that there’s no ACController.resources.dll
satellite assembly in the same folder as ACController.dll. Instead, the neutral
resources are embedded into the ACController.dll.

You don’t need to embed a neutral resource, though. As an alternative, you can set
a particular culture code as the neutral culture with a custom attribute in Program.cs:

using System.Resources;

[assembly: NeutralResourcesLanguageAttribute("en-US",
 UltimateResourceFallbackLocation.Satellite)]

namespace ACController { }

This attribute tells the ResourceManager to look for an “en-US” satellite assembly
whenever it can’t find a satellite assembly that matches the user’s current culture.
Note that if it can’t find the designated neutral satellite assembly, it will throw an
exception.

To test this out, you could rename strings.restext to strings.en-US.restext and delete
the strings.resources file.

Listing 10.8 Applying es-MX culture code with ResourceManager

Namespace for the attribute This custom attribute
applies on the
assembly level.

Falls back to satellite
assemblies instead of
main assembly

Attribute can go outside
the rest of the code

Add for
CultureInfo class

Add for
Thread class

Creates a culture using
the culture code

Sets the
current
culture

Also sets the UI culture

You can also pass a culture
to GetString if you don’t
want the default.

202 CHAPTER 10 Building world-ready applications
WHAT’S THE DIFFERENCE BETWEEN CURRENTCULTURE AND CURRENTUICULTURE?
You’ll generally want the current culture and current UI culture to be the
same for testing, but what do these properties mean? CurrentCulture is
used for formatting, such as for dates, times, and sort order. CurrentUI-
Culture is used by ResourceManager to determine which resources to
search for. For this chapter, CurrentUICulture will be your means of get-
ting a resource string in the right language.

SETTING CULTURE IN MULTITHREADED APPLICATIONS The culture is set only on
the current thread, rather than on the whole process. If you want the culture
applied to all threads, you can use the CultureInfo.DefaultThread-
CurrentCulture and CultureInfo.DefaultThreadCurrentUI-
Culture properties. Note, though, that if you set the culture on the current
thread and perform asynchronous operations via async/await or through
tasks, the culture is maintained across threads.

10.2 Using a logging framework instead of writing
to the console
Your air conditioner controller program may be world-ready, but it writes all logs to
the console. It turns out that the air conditioner doesn’t have a console. You’ll need to
write logs to different places, like files and external web services. Rather than write
each log several times in the code depending on where it’s supposed to go, you can
use a logging framework and write the log once. Then multiple subscribers can each
work with the log messages independently. But you must maintain your code’s world-
readiness while using logging frameworks.

 There are many logging frameworks for .NET Core. To keep things simple, you’ll
use another Microsoft.Extensions library called Microsoft.Extensions.Logging. Start
by restructuring the classes. Figure 10.1 shows a class diagram for the restructured
code using the Microsoft.Extensions.Logging library.

ResourceManager can’t find satellite assemblies
As of .NET Core 2.0, when you run or debug this code using dotnet run or your IDE,
you won’t see the Spanish output. You’ll need to create a self-contained version of
this application first. Hopefully this will be fixed this in later versions.

To create a self-contained application, add a <RuntimeIdentifiers> property in
the property group in the ACController.csproj file with the runtime identifier you need.
Then run the command dotnet publish -c Release -r <runtimeid> to gener-
ate the self-contained application. If you then run the executable from the command
line, the Spanish text should appear.

Self-contained applications are covered in chapter 2, and a table of runtime identifi-
ers is available in appendix A.

203Using a logging framework instead of writing to the console
Figure 10.1 Class diagram for the air conditioner controller

The controller has a Test method to test the status of the air conditioner. Invoke it
using the following code.

namespace ACController
{
 class Program
 {
 static void Main()
 {
 var controller = new Controller();
 controller.Test();
 }
 }
}

Listing 10.9 Program.cs tests the Controller

Program

Main() << use >>

Controller

Test()

ExhaustAirTemp: double

<< use >>

RobustLoggerExtension

RobustLoggerProvider : ILoggerProvider

AddRobust(this: LoggerFactory): LoggerFactory

CreateLogger(String): ILogger

<< use >>

RobustLogger : ILogger

IsEnabled(LogLevel): Boolean

<< use >>

Telemetry

LogStatus()

<< use >>

TempControl

<< use >>

CoolantTemp: double

OutsideAirTemp: double

Log<TState>(LogLevel, EventId, TState, Exception, Func<TState, Exception, string>)

BeginScope<TState>(TState): IDisposable

204 CHAPTER 10 Building world-ready applications
The Controller class uses the Telemetry class and the Microsoft.Extensions.Log-
ging library, as shown in the next listing.

using Microsoft.Extensions.Logging;

namespace ACController
{
 public class Controller
 {
 readonly LoggerFactory loggerFactory;
 readonly Telemetry telemetry;

 public Controller()
 {
 loggerFactory = new LoggerFactory()
 .AddRobust();
 telemetry = new Telemetry(
 loggerFactory.CreateLogger<Telemetry>());
 }

 public void Test()
 {
 telemetry.LogStatus();
 }
 }
}

In listing 10.10, you create a LoggerFactory instance and use it to create an ILog-
ger instance for the Telemetry class. The AddRobust extension method comes
from the RobustLoggerExtension class. To understand what this is all about, let’s
explore the Microsoft.Extensions.Logging library.

10.2.1 Using the Microsoft .Extensions.Logging library

To use the Microsoft.Extensions.Logging library, you’ll need to add a reference to the
project file, as follows.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Extensions.Logging"
 Version="2.0.0" />
 </ItemGroup>
</Project>

Listing 10.10 Controller class

Listing 10.11 Add a reference to Microsoft logging extensions

Factory for
creating loggers

Extension method to apply
custom logger

Creates a logger and provides
it to the Telemetry class

Controller test writes
the telemetry logs

205Using a logging framework instead of writing to the console
The AddRobust() extension method in listing 10.10 adds what’s called a logging pro-
vider to the factory. If you wanted to write logs to the console, you’d use the console
logging provider through the AddConsole() extension method defined in Micro-
soft.Extensions.Logging.Console, which is part of a separate package. But as men-
tioned before, your air conditioner controller doesn’t have a console. You need a way
to send logs back to the manufacturer that’s robust enough to handle connectivity
issues, power failures, and so on. You need to create your own logger implementation.

 An example implementation is shown in the following listing.

using System;
using Microsoft.Extensions.Logging;

namespace ACController
{
 public class RobustLogger : ILogger
 {
 public IDisposable BeginScope<TState>(TState state) =>
 throw new NotImplementedException();

 public bool IsEnabled(LogLevel logLevel) =>
 logLevel > LogLevel.Debug;

 public void Log<TState>(LogLevel logLevel, EventId eventId,
 TState state, Exception exception,
 Func<TState, Exception, string> formatter)
 {
 Console.WriteLine(string.Join(" ",
 DateTime.Now, logLevel,
 formatter(state, exception)));
 }
 }
}

ROBUST ONLY IN NAME Although I call this a RobustLogger, an actual robust
logger wouldn’t write to the console.

In order to add the RobustLogger to the factory, you need a provider. The simplest
version of a provider is shown in the following listing.

using Microsoft.Extensions.Logging;

namespace ACController
{
 public class RobustLoggerProvider : ILoggerProvider
 {
 public ILogger CreateLogger(string categoryName) =>
 new RobustLogger();

Listing 10.12 Custom logger implementation for the air conditioner controller

Listing 10.13 RobustLoggerProvider—a custom logger provider implementation

You’re currently not
using this feature.

Emits everything except
Debug-level logs

For demo purposes, you
still write to the console.

Prints timestamp
and log level

The formatter creates
the logging string.

You don’t need any
special initialization.

206 CHAPTER 10 Building world-ready applications
 public void Dispose() { }
 }
}

Most providers include extension methods so they can be used in the method-chain-
ing pattern you learned about in chapter 6. The following listing shows how to imple-
ment this extension method.

using Microsoft.Extensions.Logging;

namespace ACController
{
 public static class RobustLoggerExtension
 {
 public static LoggerFactory AddRobust(
 this LoggerFactory factory)
 {
 factory.AddProvider(new RobustLoggerProvider());
 return factory;
 }
 }
}

There are lots of custom logger implementations out there. Several are under the
Microsoft.Extensions.Logging name and are easy to find in NuGet. Other custom
implementations may be a bit harder to find. Before writing a custom logger, consider
searching GitHub and NuGet first. If you end up creating a custom logger, consider
putting it on GitHub and NuGet.

 The only class you have left to implement is the Telemetry class. For that class,
borrow your previous code that uses the ResourceManager, as shown in the next
listing.

using System.Reflection;
using System.Resources;
using Microsoft.Extensions.Logging;

namespace ACController
{
 public class Telemetry
 {
 private readonly ILogger logger;
 private ResourceManager resMan;

 public Telemetry(ILogger logger)
 {
 this.logger = logger;
 this.resMan = new ResourceManager(

Listing 10.14 Logger extension method for chaining

Listing 10.15 The air conditioner controller’s Telemetry class

ILoggerProvider
inherits IDisposable.

Extensions go
in a static class.

“this” is what allows the
extension on LoggerFactory.

All you need to do
is call AddProvider.

207Using a logging framework instead of writing to the console
 "ACController.strings",
 typeof(Program).GetTypeInfo().Assembly);
 }

 public void LogStatus()
 {
 logger.LogInformation(
 resMan.GetString("ExhaustAirTemp") +
 TempControl.ExhaustAirTemp + " C");
 logger.LogInformation(
 resMan.GetString("CoolantTemp") +
 TempControl.CoolantTemp + " C");
 logger.LogInformation(
 resMan.GetString("OutsideAirTemp") +
 TempControl.OutsideAirTemp + " C");
 }
 }
}

You’ll need to add more entries to your restext files for the CoolantTemp and
OutsideAirTemp resource strings, as shown in the following listing.

ExhaustAirTemp=Exhaust Air Temp:
CoolantTemp=Coolant Temp:
OutsideAirTemp=Outside Air Temp:

Your ACController code is now functional and uses a logging library, but the applica-
tion isn’t world-ready. Before we get into the specifics of what’s wrong with this appli-
cation, let’s take a look at the internationalization process.

10.2.2 Internationalization

Often abbreviated as i18n (i + 18 letters + n), internationalization means different
things to different companies. In Microsoft and .NET terms, internationalization
refers to the overall process, which consists of three steps:

 Globalization (g11n)
 Localizability review (l12y)
 Localization (l10n)

The definitions for these terms in Microsoft’s documentation are vague and circular.
A more helpful way to understand what they mean is to go through each step of the
process.

10.2.3 Globalization

Globalization, aka world-readiness, involves designing and developing an application
that can adapt to the region and culture of the user. Any data that can be exposed to
the user, such as strings, dates, and numbers, needs to be adaptable to the region’s
and culture’s language, sort order, and formats.

Listing 10.16 Updated strings.restext

Writes an
information-level log

Gets the log message
for the current culture

Add C to the end to
indicate Celsius.

208 CHAPTER 10 Building world-ready applications
 Note that although globalization means the software must be adaptable to the
user’s region and culture, it doesn’t mean that each culture is supported. You
shouldn’t need to alter the code when you want to support an additional language or
region, but you don’t need to have that language built into your code when you ship.
In the case of your ACController code, we’ve overlooked a whole class of languages.

 Let’s take another look at the code that writes the telemetry data. The code writes
three values to the log. Each line looks like the following.

logger.LogInformation(
 resMan.GetString("CoolantTemp") +
 TempControl.CoolantTemp +
 " C");

The code in listing 10.17 writes the current temperatures to the log, but this code isn’t
world-ready. The problem is in the string concatenation. It makes an assumption
about the order of elements in a sentence, which may not make sense in all languages.
For instance, in languages that read right to left, the C should appear on the left.

 To fix this, alter the strings in the strings.restext file to allow for substituting the
temperature value wherever necessary. In the following example, the placeholders for
string substitution are part of the resource file. Resource files in other languages can
position the placeholders wherever appropriate.

ExhaustAirTemp=Exhaust Air Temp: {0} C
CoolantTemp=Coolant Temp: {0} C
OutsideAirTemp=Outside Air Temp: {0} C

TEMPERATURES .NET doesn’t provide facilities for converting temperatures
based on region. If you want to show Fahrenheit for customers in the United
States and its territories, you’ll need to detect the region and do the conver-
sion yourself. You’d also want to make the Celsius designation another substi-
tutable parameter in the string.

It now seems like you’ve made your code world-ready. The next step is to go through a
localizability review.

10.2.4 Localizability review

The localizability review is a chance to review your application and test that it’s global-
ized (world-ready) and ready for localization (translating to different languages).
Think of localizability as similar to a code review, but with a focus on globalization.
Your team needs to check all the input and output to determine if it’s user-facing or if
it’s persisting and could be affected by the culture it’s run in.

Listing 10.17 The air conditioner controller’s Telemetry class

Listing 10.18 strings.restext modified to use substitution for the temperature value

Log message translated
to current culture

Temperature
measurementMetric, indicating this

temperature is in Celsius

209Using the Microsoft localization extensions library
 In an earlier example, you set the culture as follows.

var culture = CultureInfo.CreateSpecificCulture("es-MX");
Thread.CurrentThread.CurrentCulture = culture;
Thread.CurrentThread.CurrentUICulture = culture;

There’s no complete list of all cultures because that would be a constantly changing
list. This means there’s nothing that checks whether your culture code is a real one, so
you can create a dummy culture for testing. Dummy cultures can be useful for finding
areas of your code that break in build or test. For example, sometimes developers
make assumptions about the length of strings. In some languages, translations may be
much longer strings that could cause issues. This is easy enough to check with a
dummy culture. Because translation of all the string resources (localization) usually
happens very late in the product-development lifecycle, building a few dummy cul-
tures early on can help you avoid some last minute fixes.

 There’s no prescribed way of doing a localizability review. Doing a code review and
using dummy cultures are two helpful approaches. You can also enlist the help of a
team or organization that specializes in internationalization.

 Before we look at the localization step, there’s still more you can do to make your
code world-ready.

10.3 Using the Microsoft localization extensions library
The ResourceManager class, while useful, can be a bit cumbersome, because you
have to create a key for each resource string and a file with the neutral culture
resources. The ASP.NET Core team came up with a more intuitive solution called the
IStringLocalizer. In ASP.NET Core, the localizer is already set up for you, but in
libraries and console applications, you’ll need to set this up yourself.

 Start by adding a reference to this library in the project file, as follows.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Extensions.Logging"
 Version="2.0.0" />
 <PackageReference Include="Microsoft.Extensions.Localization"
 Version="2.0.0" />
 </ItemGroup>
</Project>

Listing 10.19 Setting the culture on the current thread

Listing 10.20 Adding a reference to the localization extension in ACController.csproj

Add this
reference.

210 CHAPTER 10 Building world-ready applications
Next, you’ll want to initialize the localizer factory. Modify Controller.cs as follows.

using Microsoft.Extensions.Localization;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Options;

namespace ACController
{
 public class Controller
 {
 readonly LoggerFactory loggerFactory;
 readonly ResourceManagerStringLocalizerFactory resourceFactory;
 readonly Telemetry telemetry;

 public Controller()
 {
 loggerFactory = new LoggerFactory()
 .AddRobust();
 var locOptions = new LocalizationOptions()
 { ResourcesPath = "resources" };
 var options = Options.Create<LocalizationOptions>(locOptions);
 resourceFactory = new
 ResourceManagerStringLocalizerFactory(
 options, loggerFactory);
 telemetry = new Telemetry(
 loggerFactory.CreateLogger<Telemetry>(),
 resourceFactory.Create(typeof(Telemetry)));
 }

 public void Test()
 {
 telemetry.LogStatus();
 }
 }
}

Before, you kept the restext files in the same folder as the rest of the project. Going
forward, you’ll keep these files in a subfolder called resources. In large projects, this
can help with organization.

 The ResourceManagerStringLocalizerFactory.Create method creates an
object that implements the IStringLocalizer interface. The following listing
shows how to use this object in the Telemetry class.

using Microsoft.Extensions.Localization;
using Microsoft.Extensions.Logging;

namespace ACController
{

Listing 10.21 Controller class modified to initialize the localizer factory

Listing 10.22 Telemetry class modified to use the localizer

Add namespace for
localization extension

Needed to configure
the localizer factory

Indicates your
resources are in a local
path called resources

Factory that wraps
ResourceManager for youWrites debug

logs to the
robust logger

Creates a localizer
for Telemetry

211Using the Microsoft localization extensions library
 public class Telemetry
 {
 private readonly ILogger logger;
 private readonly IStringLocalizer localizer;

 public Telemetry(ILogger logger,
 IStringLocalizer localizer)
 {
 this.logger = logger;
 this.localizer = localizer;
 }

 public void LogStatus()
 {
 logger.LogInformation(localizer[
 "Exhaust Air Temp: {0} C"],
 TempControl.ExhaustAirTemp);
 logger.LogInformation(localizer["Coolant Temp: {0} C"],
 TempControl.CoolantTemp);
 logger.LogInformation(localizer["Outside Air Temp: {0} C"],
 TempControl.OutsideAirTemp);
 }
 }
}

IStringLocalizer handles finding resources in a helpful way. With Resource-
Manager, you need to provide a key, which is a token like ExhaustAirTemp. The
problem with these keys is that the developer doesn’t know what string will be written
to the log without checking the resources file. And if ResourceManager can’t find a
value for a key, it throws an exception. By contrast, IStringLocalizer will write the
key, which encourages you to use the full text as the key. This means that the full text
of the log is used in the code, allowing developers to see the actual log message with-
out referring to the resource file.

 Because IStringLocalizer will write the key, the preceding code can be exe-
cuted right away without creating any resources in the resources folder. Do a dotnet
run, and you should see output similar to the following.

6/23/2017 1:37:45 PM Information Exhaust Air Temp: 17 C
6/23/2017 1:37:45 PM Information Coolant Temp: 2 C
6/23/2017 1:37:45 PM Information Outside Air Temp: 26 C

10.3.1 Testing right-to-left languages

Imagine your company just signed a deal with a power company in Saudi Arabia (for
some reason air conditioners are popular there). I mentioned before that some lan-
guages can have sentences in a different order. Arabic is written from right to left.

 To allow your logs to be translated into Arabic, you’ll need to create an Arabic
resource file. First, create a new folder called resources as a subfolder of ACController.

Listing 10.23 Telemetry output using robust logger and string localizer

Localizer passed
in from Controller

IStringLocalizer
defines an indexer.

This string is the
key you’re looking
for in the resources.

212 CHAPTER 10 Building world-ready applications
Then create a new file called Telemetry.ar-SA.restext in the resources folder. This file
will have contents like the following listing. You can get this file from the companion
code on GitHub (http://mng.bz/F146) or by using Bing translate.

Exhaust Air Temp: {0} C=C{0} :درجة حرارة الهواء العادم
Coolant Temp: {0} C=C{0} :بردѧѧرارة المѧѧة حѧѧدرج
Outside Air Temp: {0} C=C{0} :ارجيѧѧواء الخѧѧرارة الھѧѧة حѧѧدرج

Next you’ll need to convert the restext files in the resources folder into embedded
resources. Modify the project file item groups as follows.

<ItemGroup>
 <Resx
 Include="resources*.restext" />
 <EmbeddedResource
 Include="resources*.resources" />
</ItemGroup>

Now all you need to do is set the culture so you can test.

using System.Globalization;
using System.Threading;

namespace ACController
{
 class Program
 {
 static void Main()
 {
 var culture = CultureInfo
 .CreateSpecificCulture("ar-SA");
 Thread.CurrentThread.CurrentCulture = culture;
 Thread.CurrentThread.CurrentUICulture = culture;
 var controller = new Controller();
 controller.Test();
 }
 }
}

DIAGNOSING RESOURCE ISSUES If you’re having trouble getting your resources
to show up, you can modify the RobustLogger.IsEnabled method to
return true for the debug level. Then you’ll see what the ResourceManager
tried before it settled on the text to use for your strings.

ARABIC CHARACTERS NOT SUPPORTED IN WINDOWS CONSOLE If you’re using
Windows’ command prompt, the Arabic strings will show up as “?????” in the

Listing 10.24 Resource file Telemetry.ar-SA.restext with Arabic version of telemetry logs

Listing 10.25 ACController.csproj modified to get resources from resources subfolder

Listing 10.26 Set the current culture to Arabic to test that the resources work

ar-SA is
Arabic-Saudi Arabia.

Affects date
formats Affects output

language

http://mng.bz/F146

213Using the Microsoft localization extensions library
console output. The fix for console output is complex. You’d need to install a
font that supports Arabic, and then change the code page to see the results.
Even then, the console doesn’t support right-to-left languages. To check that
your code works, redirect your output to a file: dotnet run >> output.txt.
The strings should look correct in most text editors.

10.3.2 Invariant culture

In the previous Saudi Arabia example, Thread.CurrentCulture.CurrentThread
controlled how dates and times appear in the log, and the date shown used a lunar
calendar. This may work for the customer, but the same log may not parse when con-
sumed by the manufacturer’s applications. Also Saudi Arabia may vote to use the Gre-
gorian calendar as their primary calendar instead of the lunar calendar (most of
Saudi Arabia uses the Gregorian calendar already, but the ar-SA culture code still offi-
cially uses the lunar calendar). That would change the definition of the ar-SA culture.

 Your application shouldn’t need to keep up with politics (well, at least not politics
outside of the company). When sending data back to the services at the manufacturer,
you need a culture that doesn’t change and doesn’t require separate installation—an
invariant culture built into .NET. The following listing shows how to modify the
RobustLogger to use the invariant culture.

public void Log<TState>(LogLevel logLevel, EventId eventId,
 TState state, Exception exception,
 Func<TState, Exception, string> formatter)
{
 Console.WriteLine(string.Join(" ",

Other ways to create resources
We’ve only looked at one way to add localizable resources to a .NET application, and
the restext approach is limited in that it can only handle string resources. You can
probably imagine needing different images for different cultures. Also, there seems
to be no good way to handle an equal sign (=) in the key. Because .NET Core and
.NET Standard don’t cover user-interface libraries, the restext format may be
enough. Microsoft briefly experimented with a JSON file format, but that’s not avail-
able in .NET Core.

The more common way to specify resources in .NET is through the use of the .resx
file format. .resx files are XML files that start with a large block of XML schema defi-
nition. Much like the .proj format before .NET Core, .resx files are meant to be created
and edited with tools.

You also have the option of creating a resources file programmatically. Just as you
used a build tool to convert a restext file to a resources file, you can write your own
code to generate a resources file. I won’t cover that in this book.

Listing 10.27 Modifying RobustLogger class’s Log method to use invariant culture

214 CHAPTER 10 Building world-ready applications
 DateTime.Now.ToString(
 CultureInfo.InvariantCulture.DateTimeFormat),
 logLevel,
 formatter(state, exception)));
}

The dates in the log should now appear in “MM/dd/yyyy HH:mm:ss” format. Use the
invariant culture for persisted data, such as what the controller sends back to the air
conditioner manufacturer.

 There are still two problems with the data sent to the manufacturer, though. The
first is the time zone, which can be fixed by using DateTime.UtcNow instead of
DateTime.Now. The second is the language used when writing the log message. You
don’t want to send the localized version of the log message back to the manufacturer.
You could emit two logs—one localized for the user, and one using the default culture
for the manufacturer—but the manufacturer only needs the temperature values and
timestamp. Instead of writing the log directly, you could use a custom event.

10.3.3 Using EventSource to emit events

EventSource, part of the .NET Standard, is a powerful producer/consumer event
system. On Windows, EventSource taps into the kernel-level Event Tracing for Win-
dows (ETW). Users can create an event consumer that listens to multiple sources and
combines the events together. The consumer can even be in a separate process. ETW
isn’t available in other operating systems, but EventSource still can be used on all
platforms.

 In your application, you want the telemetry data to go to two entities: the manufac-
turer and the customer. Each has a different requirement in terms of how the logs
should be formatted. One approach you can take is to build an EventSource (pub-
lisher) to emit telemetry events and two EventListeners (consumers) to capture
those events and send the data to both manufacturer and customer.

 Start by creating a new EventSource, as shown in the following listing.

using System.Diagnostics.Tracing;

namespace ACController
{
 [EventSource(LocalizationResources =
 "ACController.resources.EventSource")]
 public class ACControllerEventSource : EventSource
 {
 [Event(1)]
 public void ExhaustAirTemp(double temp) =>
 WriteEvent(1, temp);

 [Event(2)]
 public void CoolantTemp(double temp) =>
 WriteEvent(2, temp);

Listing 10.28 ACControllerEventSource is a custom event producer

DateTimeFormat implements
IFormatProvider.

You’ll be adding new
localized resources.

Each event has a
unique integer ID.

The first parameter of
WriteEvent is the event ID.

215Using the Microsoft localization extensions library
 [Event(3)]
 public void OutsideAirTemp(double temp) =>
 WriteEvent(3, temp);
 }
}

Create a singleton instance of this EventSource in the Controller class, as follows.

public class Controller
{
 internal static readonly ACControllerEventSource Events =
 new ACControllerEventSource();
}

In the LogStatus method in the Telemetry class, replace the logging calls with
events, as follows.

public void LogStatus()
{
 Controller.Events.ExhaustAirTemp(TempControl.ExhaustAirTemp);
 Controller.Events.CoolantTemp(TempControl.CoolantTemp);
 Controller.Events.OutsideAirTemp(TempControl.OutsideAirTemp);
}

EventSource events have messages into which WriteEvent will substitute the
parameters passed to it. You can localize these messages by indicating where to find
the resources using the LocalizationResources property on the EventSource
attribute.

 The first step is to create a default resource file. Add a new file to the resources
folder called EventSource.restext, with the following contents.

event_ExhaustAirTemp=Exhaust Air Temp: {0} C
event_CoolantTemp=Coolant Temp: {0} C
event_OutsideAirTemp=Outside Air Temp: {0} C

EventSource uses the convention that the key to find a resource string for an event is
“event_EVENTNAME”, where “EVENTNAME” is the name of the method used for
the event.

 You can also make a copy of the Arabic culture restext file and modify it to use the
resource keys that EventSource understands. Add a file called EventSource.ar-
SA.restext with the following contents.

Listing 10.29 Add singleton instance of ACControllerEventSource

Listing 10.30 Change the LogStatus method in Telemetry to emit events

Listing 10.31 EventSource.restext default resource file

216 CHAPTER 10 Building world-ready applications

event_ExhaustAirTemp=C{0} :درجة حرارة الهواء العادم
event_CoolantTemp=C{0} :درجة حرارة المبرد
event_OutsideAirTemp=C{0} :درجة حرارة الهواء الخارجي

Next, you’ll need to add these to the project file. You can add the individual files to
the Resx and EmbeddedResource item groups or use a wildcard as follows.

<ItemGroup>
 <Resx Include="resources*.restext" />
</ItemGroup>
<ItemGroup>
 <EmbeddedResource Include="resources*.resources" />
</ItemGroup>

You’re now able to emit the events, but there’s one problem: nobody’s listening.

10.3.4 Using EventListener to listen for events

There are many ways to listen to EventSource events, but the easiest is to create a
subclass of EventListener. The following listing shows a simple version that writes
to the console.

using System;
using System.Diagnostics.Tracing;

namespace ACController
{
 public class ConsoleEventListener : EventListener
 {
 protected override void OnEventWritten(
 EventWrittenEventArgs eventData) =>
 Console.WriteLine(eventData.Message,
 eventData.Payload[0]);
 }
}

Modify the Program.cs file to use the ConsoleEventListener, as follows.

using System.Diagnostics.Tracing;
using System.Globalization;
using System.Threading;

Listing 10.32 EventSource.ar-SA.restext Arabic-localized resource file

Listing 10.33 Adding files to Resx and EmbeddedResource item groups

Listing 10.34 EventListener that writes to the console

Listing 10.35 Using the ConsoleEventListener in the main program

Localized event
message

First event parameter, to be
substituted into the message

217Using the Microsoft localization extensions library
namespace ACController
{
 class Program
 {
 static void Main()
 {
 var culture = CultureInfo.CreateSpecificCulture("ar-SA");
 Thread.CurrentThread.CurrentCulture = culture;
 Thread.CurrentThread.CurrentUICulture = culture;
 using (var listener =
 new ConsoleEventListener())
 {
 listener.EnableEvents(Controller.Events,
 EventLevel.Verbose);
 var controller = new Controller();
 controller.Test();
 }
 }
 }
}

When running this code, you should see the localized events. If an error is reported
about not being able to find the resources, try using the --no-incremental option
when building and running.

 Now build another listener that will use the Microsoft logging extensions library so
you can use your RobustLogger code, as shown in the following listing.

using System.Diagnostics.Tracing;
using Microsoft.Extensions.Logging;

namespace ACController
{
 public class LoggerEventListener : EventListener
 {
 private readonly ILogger logger;
 public LoggerEventListener(ILogger logger) =>
 this.logger = logger;

 protected override void OnEventWritten(
 EventWrittenEventArgs eventData) =>
 logger.LogInformation(eventData.Message, eventData.Payload[0]);
 }
}

Note that with the EventSource and EventListener classes, you no longer need to
have logging or localization classes in the Telemetry class. You can simplify that class
as follows.

Listing 10.36 Listen for EventSource events, and write them to the logging extension

EventListeners
are IDisposable.

Indicates which
EventSources to listen to

You can customize what
types of events to listen to.

Passes in the
logger to use

218 CHAPTER 10 Building world-ready applications

namespace ACController
{
 public class Telemetry
 {
 public void LogStatus()
 {
 Controller.Events.ExhaustAirTemp(TempControl.ExhaustAirTemp);
 Controller.Events.CoolantTemp(TempControl.CoolantTemp);
 Controller.Events.OutsideAirTemp(TempControl.OutsideAirTemp);
 }
 }
}

Because the LoggerEventListener needs an ILogger passed into the constructor,
build it into the Controller class as shown in the next listing.

using System;
using System.Diagnostics.Tracing;
using Microsoft.Extensions.Localization;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Options;

namespace ACController
{
 public class Controller : IDisposable
 {
 internal static readonly ACControllerEventSource Events =
 new ACControllerEventSource();
 readonly LoggerFactory loggerFactory;
 readonly ResourceManagerStringLocalizerFactory resourceFactory;
 readonly Telemetry telemetry;
 readonly LoggerEventListener listener;

 public Controller()
 {
 loggerFactory = new LoggerFactory()
 .AddRobust();
 var locOptions = new LocalizationOptions() {
 ResourcesPath = "resources" };
 var options = Options.Create<LocalizationOptions>(locOptions);
 resourceFactory = new ResourceManagerStringLocalizerFactory(
 options, loggerFactory);
 listener = new LoggerEventListener(
 loggerFactory.CreateLogger<Telemetry>());
 listener.EnableEvents(Controller.Events, EventLevel.Verbose);
 telemetry = new Telemetry();
 }

 public void Test() =>
 telemetry.LogStatus();

Listing 10.37 Telemetry class simplified to only use the EventSource

Listing 10.38 Controller class that uses LoggerEventListener

Implements IDisposable since
the listener is disposable

Creates the
new listener

219Localization
 public void Dispose() =>
 listener.Dispose();
 }
}

Running this application should print each temperature twice, since there are two lis-
teners.

 Although both the Microsoft logging extensions library and EventSource allow
you to specify multiple places for your logs to go, EventSource has a more powerful
filtering mechanism. You can set keywords on each event and have the listener filter
by keyword. This can be handy if you want different events to go to different places.

10.4 Other considerations for globalization
The key to making world-ready applications is to not make assumptions about any
communications with the user. When writing software, keep the following in mind:

 Sort order and string equality depend on culture.
 Numbers should be stored in the invariant culture, because number formats

depend on culture.
 Although currency values don’t depend on culture, they can depend on the

denomination you’re using. Store this data alongside the currency value.

Some things are not built into the .NET Framework but are culture-sensitive:

 Addresses
 Telephone numbers
 Paper sizes
 Units of measure
 Length
 Weight
 Area
 Volume
 Temperature

DOES THIS REGION USE THE METRIC SYSTEM? The RegionInfo.IsMetric
property will tell you if the region uses the metric system.

10.5 Localization
In this chapter, you’ve already done some localization: you produced the Spanish and
Arabic translations of the string resources used in the ACController application.
Localization is the process of creating versions of your resources that apply to specific
cultures.

 Although Bing Translate may work for a sample application, the translations could
be nonsensical, misleading, or perhaps offensive to a native speaker. Most companies
will hire the services of a firm that specializes in translation.

The listener is disposed of when
the controller is disposed of.

220 CHAPTER 10 Building world-ready applications
AN EXAMPLE OF INCORRECT BING/GOOGLE TRANSLATION If you were to use Bing
Translate or Google Translate to convert the English word “turkey,” meaning
the animal, to Arabic, you’d get an appropriate translation referring to the
animal. If you use these tools to translate “stuffed turkey,” you’d get a transla-
tion of “stuffed Turkey” (the country).

You don’t need all the localized resources while you’re writing your code. The resource
files are also independent enough that you can avoid giving the external translation
company access to your source code by instead giving them only the resource files.

 If you’re developing with the Microsoft localization extension library, you’ll be
writing your default language resource strings as keys in the code. This means you
don’t have to create a resource file for the default language during development. This
can be detrimental, because if you want to have an external company work on transla-
tions, you’ll need to create a resource file for them by searching the code for every key
string. I see this as another reason to create a dummy culture—doing so forces devel-
opers to create and update resource files during development.

 Context is also important when it comes to translation—the resources file doesn’t
give the translator much context. You can help by adding comments to the restext file
(use # at the beginning of the line), but sometimes it will take a bit more. You might
decide to let the translator see the running application, but if it’s a specialized applica-
tion, such as an MRI machine, this might not be enough. You basically need a transla-
tor who understands your business, or you’ll have to give them enough context to
figure out the appropriate translations. Either way, don’t take localization lightly.

Additional resources
To learn more about what we covered in this chapter, see the following resources:

 Microsoft’s globalization documentation—http://mng.bz/1ID9
 The Microsoft.Extensions.Localization namespace—http://mng.bz/nu5v

Summary
In this chapter you learned about internationalization and how it affects your code.
These key concepts were covered:

 Using the Microsoft localization extension library to avoid creating resource
files until after you’re done coding

 Logging with the Microsoft logging extension library
 Emitting events with localized messages through EventSource
 Understanding the globalization, localizability review, and localization steps in

the internationalization process

These are some important techniques to remember from this chapter:

 String resources are easy to specify with restext files.
 Use the GenerateResource MSBuild task to generate resources files from

restext files.

http://mng.bz/1ID9
http://mng.bz/nu5v

221Summary
 Treat the resource key name as a default string when using the Microsoft local-
ization extension library.

 You can use multiple EventListeners to write to different places.

Internationalization may seem daunting at first, but I hope that this chapter has
helped you understand the process. Developers should keep globalization in mind
when developing, because it will make the rest of the process go more smoothly. The
most important concept of globalization is to not make assumptions about how the
communication between your user and your application will be perceived.

Multiple frameworks
and runtimes
There are two features of .NET Core that we’ll look at in this chapter. One is the
ability to run .NET Core applications on many different operating systems. The
other is the ability to write .NET code specific to each .NET framework if you need
the code to operate differently.

 You can take advantage of these capabilities in your own applications and librar-
ies, which is particularly useful when you have to extend beyond the .NET Stan-
dard. It’s also useful when you’re trying to use OS-specific features or native
components as the interfaces, because these will be different on each OS.

11.1 Why does the .NET Core SDK support multiple
frameworks and runtimes?
The .NET Core SDK supports building for multiple frameworks. You can specify
the desired framework with a command-line option.

This chapter covers
 The .NET Portability Analyzer

 Building projects that work on multiple frameworks

 Handling code that’s operating-system specific
222

223Why does the .NET Core SDK support multiple frameworks and runtimes?
 Consider these examples:

dotnet build --framework netcoreapp2.0
dotnet run --framework netcoreapp2.0
dotnet test --framework netcoreapp2.0

So far in this book we’ve only targeted one framework at a time—either netstan-
dardxxx or netcoreappxxx—so there was no occasion to exercise this capability.

 If you’re building a new library that adheres to the .NET Standard, it will work uni-
versally with other .NET frameworks. If you’re porting a library from either Xamarin
or the .NET Framework, it may be able to port directly to the .NET Standard Library
without modifying the code. There are cases, though, where your code needs to be
built for multiple frameworks.

 For instance, suppose you have code that uses XAML that you want to make work
on the .NET Framework, Xamarin Forms, and Universal Windows Applications. Or
maybe your library is used by some existing applications that you can’t change. The
.NET Core SDK makes it possible to support multiple frameworks in the same NuGet
package (generated by dotnet pack).

FRAMEWORKS VS. RUNTIMES Runtimes and frameworks are not the same
thing. A framework is a set of available APIs. A runtime is akin to an operating
system (see section 3.1.3 for more details). Your code may have to work with
some OS-specific APIs, which means that it will have different code for differ-
ent runtimes.

One example of a library that works differently depending on the runtime is the Kes-
trel engine, which is used for hosting ASP.NET Core applications. Kestrel is built on a
native code library called libuv. Because libuv works on multiple operating systems, it’s
a great foundation for the flagship ASP.NET Core web server. But even libuv has its
limitations, so Kestrel doesn’t work on all platforms.

 Another example of needing to support multiple runtimes is the System.IO.Com-
pression library. Instead of implementing Deflate/GZip compression in .NET man-
aged code, System.IO.Compression relies on a native library called zlib. The zlib
library isn’t only the de facto standard for GZip compression and decompression, it’s
also implemented in native code, which gives it a slight performance advantage over
any managed .NET implementation. Because zlib is a native library, the code in Sys-
tem.IO.Compression has to behave differently based on the runtime.

 The .NET Standard Library gives you a great foundation on which to build librar-
ies and applications for a broad array of platforms, but it’s not comprehensive. Luck-
ily, the .NET Core SDK is flexible enough to support different frameworks and
runtimes, which can allow you to consolidate code into a single project and simplify
packaging and distribution. This chapter introduces some techniques for supporting
multiple frameworks and runtimes.

224 CHAPTER 11 Multiple frameworks and runtimes
 You’ll start by trying to port code between .NET frameworks.

11.2 .NET Portability Analyzer
The .NET Portability Analyzer helps you migrate from one .NET framework to
another. See figure 11.1, which shows that Xamarin, .NET Core, and the .NET Frame-
work are all frameworks that implement the .NET Standard. The .NET Portability
Analyzer has detailed information on where each framework deviates from the stan-
dard and how that translates into other frameworks.

Figure 11.1 .NET Framework, .NET Core, and Xamarin are all different frameworks that support
the .NET Standard Library.

If you want to port your Xamarin or .NET Framework library to .NET Core, the .NET
Portability Analyzer can help. It identifies all the incompatibilities between the two
frameworks and provides suggestions, where possible. The tool is available both as a
command-line executable and a Visual Studio plugin. We’ll explore the Visual Studio
plugin version.

11.2.1 Installing and configuring the Visual Studio 2017 plugin

In Visual Studio, open the Tools menu and choose Extensions and Updates. In the
Extensions and Updates dialog box, pick Online in the tree in the left pane. Type
“portability” in the search box, and look for the .NET Portability Analyzer (shown in
figure 11.2).

 Download and install the plugin. After installing, you’ll need to restart Visual
Studio.

.NET Framework

WPF Windows Forms

ASP.NET

.NET Core

.NET Standard Library
One library consistent across app models

UWP

Xamarin

iOS

OS X
Android

Common infrastructure

ASP.NET Core

LanguagesCompilers Runtime components

225.NET Portability Analyzer

Figure 11.2 Search for the .NET Portability Analyzer.

11.2.2 Sample .NET Framework project

Now create a new project to test out the .NET Portability Analyzer. The sample project
will execute a simple latency test by making HTTP requests to a given URI.

 Create a new C# console application (listed as Console App (.NET Framework) in
the New Project dialog box) in Visual Studio targeting .NET Framework version 4.5 or
later. Alter the Program.cs file to contain the following code.

using System;
using System.Diagnostics;
using System.IO;
using System.Net;

namespace ConsoleApplication1
{
 class Program
 {

Listing 11.1 Program.cs for your test of the .NET Portability Analyzer

1. Choose Online. 2. Search for “portability.”
3. Find the .NET Portability
 Analyzer published by Microsoft.

226 CHAPTER 11 Multiple frameworks and runtimes
 static void Main(string[] args)
 {
 string uri = "http://www.bing.com";
 var firstRequest = MeasureRequest(uri);
 var secondRequest = MeasureRequest(uri);
 if (firstRequest.Item1 != HttpStatusCode.OK &&
 secondRequest.Item1 != HttpStatusCode.OK) {
 Console.WriteLine("Unexpected status code");
 } else {
 Console.WriteLine($"First request took {firstRequest.Item2}ms");
 Console.WriteLine($"Second request took {secondRequest.Item2}ms");
 }
 Console.ReadLine();
 }

 static Tuple<HttpStatusCode, long> MeasureRequest(string uri)
 {
 var stopwatch = new Stopwatch();
 var request = WebRequest.Create(uri);
 request.Method = "GET";
 stopwatch.Start();
 using (var response = request.GetResponse()
 as HttpWebResponse)
 {
 using (var reader = new StreamReader(response.GetResponseStream()))
 {
 reader.ReadToEnd();
 stopwatch.Stop();
 }

 return new Tuple<HttpStatusCode, long>(
 response.StatusCode,
 stopwatch.ElapsedMilliseconds);
 }
 }
 }
}

The preceding code is a contrived example that measures the latency of web requests.
It creates a WebRequest object pointing to the URI passed in. The response object
exposes the GetResponseStream method, because the response may be large and
take some time to download. Calling ReadToEnd makes sure you get the full content
of the response.

 The first request from the example project takes longer for many reasons, such as
JIT compiling and setting up the HTTP connection. The latency for the second
request is a more realistic measurement of the time it takes to get a response from the
endpoint (http://www.bing.com in this case).

11.2.3 Running the Portability Analyzer in Visual Studio

Let’s see how this code would port to .NET Core. First, change the settings for the Por-
tability Analyzer. Open the settings as shown in figure 11.3. Choose all the options for
.NET Core target platforms, as shown in figure 11.4.

MeasureRequest
measures the latency
of an HTTP request.

Makes sure you’ve read
the whole response

http://www.bing.com

227.NET Portability Analyzer
Figure 11.3 Open the settings for the Portability Analyzer.

Figure 11.4 Choose all .NET Core Target Platforms in the Portability Analyzer settings.

1. Right-click the console
 application in the
 Solution Explorer.

2. Choose Portability
 Analyzer Settings.

HTML report format is shown
in this book; other formats may
be better for large projects.

Choose all .NET Core
target platforms.

228 CHAPTER 11 Multiple frameworks and runtimes
Now run the Portability Analyzer on your project. This option is also in the project’s
right-click menu, shown in figure 11.5.

Figure 11.5 Run the Portability Analyzer from the right-click menu.

After the analyzer is finished, the Portability Analyzer Results pane will pop up, as
shown in figure 11.6.

Figure 11.6 Portability Analyzer Results pane

1. Right-click the console
 application in the
 Solution Explorer.

2. Choose Analyze
 Project Portability.

Click on Open Report.

229.NET Portability Analyzer
Figure 11.7 shows an HTML version of the report.
 If you’re targeting .NET Core 1.0 or 1.1, the suggested method for fixing the code

is to use a different means of making HTTP requests entirely, via HttpClient. You
learned about HttpClient back in chapter 7. Change Program.cs to use Http-
Client as shown in the following listing.

using System.Net.Http;

class Program
{
 static HttpClient client = new HttpClient();

 static Tuple<HttpStatusCode, long> MeasureRequest(string uri)
 {
 var stopwatch = new Stopwatch();
 stopwatch.Start();
 var response = client.GetAsync(uri).Result;
 response.Content.ReadAsStringAsync().Wait();
 stopwatch.Stop();

Listing 11.2 New method that implements the suggestion from the Portability Analyzer

System.Net.WebRequest
is supported in all
.NET Core versions.

GetResponse is
only supported
in .NET Core 2.0.

Figure 11.7 Portability analysis of the sample code

Add this using
statement.

Result waits for the Task to
finish and gets the result.

You don’t need the result
here, so you just Wait().

230 CHAPTER 11 Multiple frameworks and runtimes
 return new Tuple<HttpStatusCode, long>(
 response.StatusCode,
 stopwatch.ElapsedMilliseconds);
 }
}

Run the Portability Analyzer again and you’ll see you’re now at 100%.
 In this case there was a suitable substitute that also works in the .NET Framework.

In the next section, we’ll look at how to handle cases where there isn’t a substitute that
works in both frameworks.

11.3 Supporting multiple frameworks
In the previous example, you were able to replace the old .NET Framework code with
its .NET Standard equivalent. But this may not always be possible.

 Consider the following code, written for the .NET Framework.

using System;
using System.Diagnostics.Eventing;

namespace ConsoleApplication3
{
 class Program
 {
 private static readonly Guid Provider =
 Guid.Parse("B695E411-F53B-4C72-9F81-2926B2EA233A");

 static void Main(string[] args)
 {
 var eventProvider = new EventProvider(Provider);
 eventProvider.WriteMessageEvent("Program started");

 // Do some work

 eventProvider.WriteMessageEvent("Program completed");
 eventProvider.Dispose();
 }
 }
}

You may have legacy code that uses some Windows-specific features like the preceding
code. This code produces an event in Windows under a given provider Guid. There
may be logging tools that listen for these events, and slight changes in how the events
are emitted might break those tools.

11.3.1 Using EventSource to replace EventProvider

Try running the .NET Portability Analyzer on the preceding code to see the suggested
.NET Core alternative. Figure 11.8 shows an example analysis.

Listing 11.3 EventProvider .NET Framework sample

The actual Guid
is not important.

Writes events
to Windows

231Supporting multiple frameworks
Figure 11.8 Portability analysis of the sample code using EventProvider

The recommended change in this case is to use an EventSource. An EventSource
is definitely the way to go when writing events without relying on platform-specific fea-
tures. You learned about EventSource back in chapter 10. Unfortunately, if you’re
replacing an existing Windows event provider, the EventSource implementation
may not produce the exact same events.

 Let’s look at a similar version written for .NET Core using EventSource, shown in
the following listing.

using System.Diagnostics.Tracing;

namespace SampleEventSource
{
 [EventSource(Name = "My Event Source",
 Guid = "B695E411-F53B-4C72-9F81-2926B2EA233A")]
 public sealed class MyEventSource : EventSource
 {
 public static MyEventSource Instance =
 new MyEventSource();

 [Event(1,
 Level = EventLevel.Informational,
 Channel = EventChannel.Operational,
 Opcode = EventOpcode.Start,
 Task = Tasks.Program,

Listing 11.4 Writes events using EventSource

EventProvider isn’t supported
in any .NET Core version.

Same provider Guid

Helper singleton
instance

EventSource allows more
customization of events.

Tasks are required
when using an Opcode.

232 CHAPTER 11 Multiple frameworks and runtimes
 Message = "Program started")]
 public void ProgramStart()
 {
 WriteEvent(1);
 }

 [Event(2,
 Level = EventLevel.Informational,
 Channel = EventChannel.Operational,
 Opcode = EventOpcode.Stop,
 Task = Tasks.Program,
 Message = "Program completed")]
 public void ProgramStop()
 {
 WriteEvent(2);
 }

 public class Tasks
 {
 public const EventTask Program = (EventTask)1;
 }
 }
}

In the preceding code, you took advantage of some of the capabilities that Event-
Source has to offer. It also makes the Program code much cleaner, as you can see in
the following listing.

using System;

namespace SampleEventSource
{
 public class Program
 {
 public static void Main(string[] args)
 {
 MyEventSource.Instance.ProgramStart();

 // Do some work

 MyEventSource.Instance.ProgramStop();
 }
 }
}

The events are slightly different than before, so there’s a risk that the new code will
break existing tools. But because those tools will have to be changed to work with the
.NET Core version of the application anyways, don’t worry about making the events
exactly the same. Instead, you’ll focus on allowing the .NET Framework version of the
application to continue to work as before. That means you have to support multiple
frameworks.

Listing 11.5 Program.cs refactored to use the new EventSource

Start and Stop are
standard Opcodes.

233Supporting multiple frameworks
 Start by creating the .NET Core project. Create a folder called SampleEvent-
Source, and open a command prompt in that folder. Run dotnet new console to
create a new .NET Core console application. Modify the Program.cs file to match list-
ing 11.5. Also create a new file called MyEventSource.cs with the code in listing 11.4.

 Feel free to build and run the application. You won’t see any output from it. To
view the logs that are emitted from the EventSource, you’ll need to create a con-
sumer, which was covered in chapter 10. For this chapter, we’ll just assume it works.

11.3.2 Adding another framework to the project

Indicating support for another framework is straightforward. Modify the Sam-
pleEventSource.csproj file as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>

 <TargetFrameworks>netcoreapp2.0;net46</TargetFrameworks>
 <RuntimeFrameworkVersion
 Condition=" '$(TargetFramework)' == 'netcoreapp2.0' "
 >2.0.0-*</RuntimeFrameworkVersion>
 </PropertyGroup>

 <ItemGroup Condition=" '$(TargetFramework)' == 'net46' ">
 <Reference Include="System" />
 <Reference Include="Microsoft.CSharp" />
 </ItemGroup>

</Project>

Notice that you specifically need net46. net45 won’t work in this case because the
EventChannel class wasn’t defined in that version. If you remove the Channel speci-
fication from the MyEventSource class, however, you should be able to usenet45.

 You can now build this code for the .NET Framework using the following command:

dotnet build --framework net46

This will use the EventSource on the .NET Framework and .NET Core, but you want
it to revert to the old code when using the .NET Framework. Because the framework is
something you know at build time, you can use preprocessor directives. Listing 11.7
shows how this works.

WHAT IS A PREPROCESSOR DIRECTIVE? A preprocessor directive is a statement
that’s executed before compilation starts. If you’re familiar with C or C++, you
may be familiar with creating macros using preprocessor directives. Although
macros aren’t available in C#, you can still have conditionally compiled code.

Listing 11.6 csproj for sample with .NET Framework support

Change TargetFramework
to TargetFrameworks.

RuntimeFramework-
Version is only set
for netcoreapp2.0.

References are only needed for
building with .NET Framework.

234 CHAPTER 11 Multiple frameworks and runtimes

using System;

#if NET46
using System.Diagnostics.Eventing;
#endif

namespace SampleEventSource
{
 public class Program
 {
#if NET46
 private static readonly Guid Provider =
 Guid.Parse("B695E411-F53B-4C72-9F81-2926B2EA233A");
#endif

 public static void Main(string[] args)
 {
#if NET46
 var eventProvider = new EventProvider(Provider);
 eventProvider.WriteMessageEvent("Program started");
#else
 MyEventSource.Instance.ProgramStart();
#endif

 // Do some work

#if NET46
 eventProvider.WriteMessageEvent("Program completed");
 eventProvider.Dispose();
#else
 MyEventSource.Instance.ProgramStop();
#endif
 }
 }
}

The #if and #endif are preprocessor directives that will include the code contained
between them only if NET46 is defined. NET46 is created automatically from the name
of the framework. The special characters are usually replaced with underscores, and
everything is in uppercase. For instance, the framework moniker netcoreapp2.0
would be defined as NETCOREAPP2_0.

ALTERNATIVES TO PUTTING #IF/#ENDIF IN THE MIDDLE OF YOUR CODE Putting
#if directives all over your code can make it hard to read. There are a cou-
ple of ways that I avoid this. The first is to have two copies of the file (for
example, one for NET46 and one for NETCOREAPP2_0) with #if/#endif
surrounding the entire contents of each file. Another way is to also have
these two different versions of the file, but to exclude or include one based
on conditions in the project file. This has the obvious drawback of

Listing 11.7 Program.cs rewritten to use preprocessor directives

NET46 is automatically
defined.

235Supporting multiple frameworks
maintaining two files, so it’s helpful to isolate the framework-specific code
in one class to reduce duplication.

You should now be able to build the application by specifying the target moniker at
the command line, as follows:

dotnet build --framework net46
dotnet build --framework netcoreapp2.0

You can also build all frameworks by running dotnet build with no --framework
specification.

11.3.3 Creating a NuGet package and checking the contents

When you build the NuGet package, it should contain both frameworks. To test this out,
run dotnet pack. Browse to the folder that has the SampleEventSource.1.0.0.nupkg
file, and change the extension to .zip. NuGet packages are essentially zip files organized
in a particular way. Use your normal zip tool to see the contents.

 The contents of SampleEventSource.1.0.0.nupkg should look like this:

 _rels
 .rels
 lib
 net46

– SampleEventSource.exe
– SampleEventSource.runtimeconfig.json

 netcoreapp2.0
– SampleEventSource.dll
– SampleEventSource.runtimeconfig.json

 [Content_Types].xml
 SampleEventSource.nuspec

In the NuGet package, the .nuspec file defines the contents, dependencies, metadata,
and so on. The two frameworks supported by the application get their own folder and
copy of the binary. In the case of the .NET Framework, the binary is in .exe form
because this is an executable application. The .NET Core version of the binary is a .dll
because it’s not a self-contained application (see chapter 3).

11.3.4 Per-framework build options

One thing we’ve overlooked in the previous scenario is the MyEventSource.cs file. By
default, all the .cs files in the project folder are included in the build. This means that
MyEventSource.cs is being built even when you target the net46 framework.

 The build doesn’t fail because .NET 4.6 has all of the EventSource features used
by your code, but suppose the requirement for this application is that it has to work

236 CHAPTER 11 Multiple frameworks and runtimes
on an older version of the .NET Framework, like 4.5. Change the framework moniker
to net45 as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFrameworks
 >netcoreapp2.0;net45</TargetFrameworks>
 <RuntimeFrameworkVersion
 Condition=" '$(TargetFramework)' == 'netcoreapp2.0' "
 >2.0.0-*</RuntimeFrameworkVersion>
 </PropertyGroup>

 <ItemGroup
 Condition=" '$(TargetFramework)' == 'net45' ">
 <Reference Include="System" />
 <Reference Include="Microsoft.CSharp" />
 </ItemGroup>

</Project>

Also, be sure to fix the preprocessor directives in the Program.cs file, as follows.

using System;

#if NET45
using System.Diagnostics.Eventing;
#endif

namespace SampleEventSource
{
 public class Program
 {
#if NET45
 private static readonly Guid Provider =
 Guid.Parse("B695E411-F53B-4C72-9F81-2926B2EA233A");
#endif

 public static void Main(string[] args)
 {
#if NET45
 var eventProvider = new EventProvider(Provider);
 eventProvider.WriteMessageEvent("Program started");
#else
 MyEventSource.Instance.ProgramStart();
#endif

 // Do some work

#if NET45
 eventProvider.WriteMessageEvent("Program completed");
 eventProvider.Dispose();

Listing 11.8 csproj with net45 instead of net46

Listing 11.9 Program.cs using NET45 instead of NET46

Set to
net45

Set to
net45

237Supporting multiple frameworks
#else
 MyEventSource.Instance.ProgramStop();
#endif
 }
 }
}

Try to build it, and you’ll see the following errors.

C:\dev\SampleEventSource\MyEventSource.cs(14,7): error CS0246: The type or
 namespace name 'Channel' could not be found (are you missing a using
 directive or an assembly reference?)
C:\dev\SampleEventSource\MyEventSource.cs(14,17): error CS0103: The name
 'EventChannel' does not exist in the current context
C:\dev\SampleEventSource\MyEventSource.cs(25,7): error CS0246: The type or
 namespace name 'Channel' could not be found (are you missing a using
 directive or an assembly reference?)
C:\dev\SampleEventSource\MyEventSource.cs(25,17): error CS0103: The name
 'EventChannel' does not exist in the current context

Compilation failed.
 0 Warning(s)
 4 Error(s)

You need to remove the MyEventSource.cs file from compilation when building for
the net45 framework. Change the csproj to exclude the MyEventSource.cs file from
compilation under net45. You learned how to do this in chapter 3. The following list-
ing shows how this would be done in your project.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFrameworks>netcoreapp2.0;net45</TargetFrameworks>
 <RuntimeFrameworkVersion
 Condition=" '$(TargetFramework)' == 'netcoreapp2.0' "
 >2.0.0-*</RuntimeFrameworkVersion>
 </PropertyGroup>

 <ItemGroup Condition=" '$(TargetFramework)' == 'net45' ">
 <Reference Include="System" />
 <Reference Include="Microsoft.CSharp" />
 <Compile Remove="MyEventSource.cs" />
 </ItemGroup>

</Project>

You should now be able to successfully build and run this application in either
framework.

Listing 11.10 Errors when building for .NET Framework 4.5

Listing 11.11 csproj with framework-specific buildOptions

Add this
line.

238 CHAPTER 11 Multiple frameworks and runtimes
11.4 Runtime-specific code
In section 11.1 we looked at examples of .NET Core libraries taking a dependency on
a native library, like libuv or zlib, to do some low-level operations with the operating
system. You may need to do this in your library or application.

 To do so, you’ll need to define the runtimes you support in the Runtime-
Identifiers in the csproj, as follows.

<PropertyGroup>
 <TargetFrameworks>netcoreapp2.0;net46</TargetFrameworks>
 <OutputType>Exe</OutputType>
 <RuntimeIdentifiers>osx.10.11-x64;ubuntu-x64</RuntimeIdentifiers>
</PropertyGroup>

To illustrate code that’s OS-dependent, you’ll attempt to get the process ID of the pro-
cess your code is running in, without the help of .NET Core. If you peek into how
.NET Core does it, you’ll find the code that I’m using in this section (see https://
github.com/dotnet/corefx).

 To get the process ID on Windows, you can use the code in the following listing.

using System.Runtime.InteropServices;

internal partial class Interop
{
 internal partial class WindowsPid
 {
 [DllImport("api-ms-win-core-processthreads-l1-1-0.dll")]
 internal extern static uint GetCurrentProcessId();
 }
}

Note that this code doesn’t have an implementation. It uses DllImport to make an
interop call to a native assembly. The native assembly has a method called Get-
CurrentProcessId that does the real work.

 Similarly, the following listing shows the code .NET Core uses to get the process ID
on Linux systems.

using System.Runtime.InteropServices;

internal static partial class Interop
{
 internal static partial class LinuxPid
 {
 [DllImport("System.Native",

Listing 11.12 Enumerating multiple runtimes in csproj

Listing 11.13 Interop.WindowsPid.cs—code to get the process ID on Windows

Listing 11.14 Interop.LinuxPid.cs—code to get the process ID on Linux

https://github.com/dotnet/corefx
https://github.com/dotnet/corefx

239Runtime-specific code
 EntryPoint="SystemNative_GetPid")]
 internal static extern int GetPid();
 }
}

The question is how you can use the Linux code on Linux runtimes and the Windows
code on Windows runtimes. Given our discussion in the previous section on support-
ing multiple frameworks, you might think the answer is to use preprocessor directives
and a per-runtime setting in the project file. Unfortunately, there are no extra build
settings you can provide for specific runtimes. NuGet packages don’t distinguish the
runtime in the same way that they do frameworks.

 That leaves detecting the operating system up to the code. Try this out by using the
previous process ID code. First, create a new folder called Xplat, and open a com-
mand prompt in that folder. Run dotnet new console. Then create the
Interop.WindowsPid.cs and Interop.LinuxPid.cs files, as listed earlier.

 Now create a file called PidUtility.cs with the following code.

using System;
using System.Runtime.InteropServices;

namespace Xplat
{
 public static class PidUtility
 {
 public static int GetProcessId()
 {
 var isWindows = RuntimeInformation.IsOSPlatform(OSPlatform.Windows);
 var isLinux = RuntimeInformation.IsOSPlatform(OSPlatform.Linux);

 if (isWindows)
 return (int)Interop.WindowsPid.GetCurrentProcessId();
 else if (isLinux)
 return Interop.LinuxPid.GetPid();
 else
 throw new PlatformNotSupportedException("Unsupported platform");
 }
 }
}

This utility class detects the OS at runtime and uses the appropriate implementation
of the process ID interop class. To test it out, write a simple Console.WriteLine in
the Program.cs file, as follows.

using System;

namespace Xplat
{

Listing 11.15 Contents of PidUtility.cs

Listing 11.16 Contents of Program.cs

240 CHAPTER 11 Multiple frameworks and runtimes
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine($"My PID is {PidUtility.GetProcessId()}");
 }
 }
}

Do a dotnet run. If you’re running on a Windows or Linux machine or a Docker
container, you should see the process ID.

 If you’re writing a library, you should indicate in the csproj that you only support
the two runtimes. This lets any projects that depend on yours know what runtimes
they will function on. The following listing shows how to do this.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 <RuntimeIdentifiers>win;linux</RuntimeIdentifiers>
 </PropertyGroup>

</Project>

Note that the win and linux runtimes are pretty broad categories. I picked them for
demonstration purposes, but it may be necessary to be more specific about which
operating systems the native code will work on.

Additional resources
To learn more about what we covered in this chapter, see the following resources:

 .NET Core GitHub repo—https://github.com/dotnet/corefx
 .NET Portability Analyzer—http://mng.bz/P5qN

Summary
In this chapter we looked at how to build applications that work differently depending
on the framework or runtime in which they’re used. We covered these key concepts:

 Using the .NET Portability Analyzer to assist in porting code between frameworks
 Using precompiler directives to build different code for different frameworks
 Creating code that uses OS-specific features

These are some important techniques to remember from this chapter:

 Precompiler directives can be used to optionally build code based on build
properties.

Listing 11.17 Xplat.csproj modified to indicate support for only two runtimes

https://github.com/dotnet/corefx
http://mng.bz/P5qN

241Summary
 The .NET SDK pack command will generate NuGet packages that have all the
frameworks you target.

Many of the early .NET Core projects undertaken by .NET Framework developers will
involve porting existing code to .NET Core or .NET Standard. The .NET Portability
Analyzer provides useful suggestions for these kinds of migrations. With the multiple
framework support in .NET SDK, you can use newer features in .NET Core while still
preserving functionality from existing applications.

 You also learned about the flexibility in the .NET Core SDK for supporting multi-
ple operating systems. This is useful when writing code that works with OS-specific
libraries or features.

 These two features in .NET Core—support for multiple frameworks and run-
times—are useful when porting existing projects. Whether you’re moving from .NET
Framework to .NET Core, Windows to Linux, or both, these features should give you
the ability to tackle some of the more difficult issues encountered when converting a
project to a new development platform.

Preparing for release
Once your library is coded, tested, and localized, you’re ready to release it to your
organization or the world. This chapter covers a few of the considerations for
release. You want credit for your hard work, and there are ways to prevent someone
else from copying it and taking credit themselves. You also want to ensure that devel-
opers using your library have a way to verify that they’re getting the real version.

 Let’s first explore how to build a package.

12.1 Preparing a NuGet package
Back in chapter 2 you learned about the dotnet pack command. This is the sim-
plest way to build a NuGet package. You can easily share the resulting NuGet package
with others in your organization through a custom NuGet store. You can also publish
to the official nuget.org site and allow developers from all over the world to use it.

This chapter covers
 Building a NuGet package

 Using a private NuGet feed

 Signing assemblies
242

243Preparing a NuGet package
 Before publishing to nuget.org, take a moment to consider some of the properties
of your package that will be displayed on nuget.org. Figure 12.1 shows an example
package and highlights the properties under your control.

Figure 12.1 An example of a NuGet package on nuget.org

Icon

Title—nuget.org-friendly name

Version Description

ID—name used for
referencing the package
from a project file

Owners—the NuGet account
used to publish the package

Authors

CopyrightTags

Dependencies determined
from package contents

Link to
project
site

Link to
license

244 CHAPTER 12 Preparing for release

L
left
this
 Let’s assume you’re the author of the package in figure 12.1. Your code could be in
a folder called Newtonsoft.Json with a project file named Newtonsoft.Json.csproj,
which would look something like the following.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.3</TargetFramework>
 <Title>Json.NET</Title>
 <Version>10.0.3</Version>
 <Description>Json.NET is a popular high-performance JSON framework
 for .NET</Description>
 <!--<PackageId>$(AssemblyName)</PackageId>-->
 <!--Owners property not supported-->
 <Authors>James Newton-King</Authors>
 <Copyright>Copyright © James Newton-King
 2008</Copyright>
 <PackageTags>json</PackageTags>
 <!--Dependencies determined from contents-->
 <PackageLicenseUrl />
 <PackageProjectUrl>
 http://www.newtonsoft.com/json</PackageProjectUrl>
 <PackageIconUrl>
 http://www.newtonsoft.com/content/images/nugeticon.png
 </PackageIconUrl>
 <PackageRequireLicenseAcceptance>
 true</PackageRequireLicenseAcceptance>
 </PropertyGroup>
</Project>

CHOOSE A LICENSE FOR YOUR PACKAGE If you’re going to publish your pack-
age on nuget.org, you should choose a license. It not only protects you as
the author, but it lets others know where they can use it. Most .NET pack-
ages from Microsoft use the MIT license, which puts few restrictions on the
user. If you need to change the license, NuGet requires you to upload a
new version.

12.1.1 How to handle project references

By default, the .NET Core SDK will treat project references and package references
the same when building a NuGet package. It assumes that you’ll build a separate
NuGet package for each project in your solution.

 For example, create two packages, Foo and Bar, using the following commands:

md PackTest
cd PackTest
dotnet new classlib -o Foo
dotnet new classlib -o Bar

Listing 12.1 What Newtonsoft.Json.csproj might look like

Title—nuget.org-
friendly name

Version

Description

Id—name used for
referencing the package
from a project file

Owners—the NuGet account
used to publish the package

Authors

Copyright
Tags

Dependencies
determined from
package contents

icense—
blank for
 example

Project site

Icon

User must accept
license when
adding package

245Preparing a NuGet package
Modify Bar.csproj to reference Foo, as follows.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include="../Foo/Foo.csproj" />
 </ItemGroup>
</Project>

Run dotnet pack in the Bar folder to build the NuGet package. Then look in the
bin/Debug folder under Bar for the Bar.1.0.0.nupkg file. You can rename this file to
have the .zip extension and examine the contents.

 Within the package is a lib folder that only contains Bar.dll, not Foo.dll. At the root
folder is a Bar.nuspec file that will have contents similar to the following.

<?xml version="1.0" encoding="utf-8"?>
<package xmlns="http://schemas.microsoft.com/packaging/2013/05/nuspec.xsd">
 <metadata>
 <id>Bar</id>
 <version>1.0.0</version>
 <authors>Bar</authors>
 <owners>Bar</owners>
 <requireLicenseAcceptance>false</requireLicenseAcceptance>
 <description>Package Description</description>
 <dependencies>
 <group targetFramework=".NETStandard2.0">
 <dependency id="Foo" version="1.0.0"
 exclude="Build,Analyzers" />
 </group>
 </dependencies>
 </metadata>
</package>

PACKAGE ID The id property used in the package dependency is the Pack-
ageId field for the Foo project.

.NET developers may argue that publishing both the Foo and Bar packages to the
NuGet store is the right way to do it. But this was not a restriction for NuGet in the
past, and some developers may want to keep the original structure of their packages.
To do this, you can use a workaround or use the nuget command directly.

Listing 12.2 Project Bar references project Foo

Listing 12.3 Contents of the Bar.nuspec file

This is a package
dependency.

246 CHAPTER 12 Preparing for release
USING A WORKAROUND TO PACKAGE PROJECT REFERENCES

This workaround was provided by Rohit Agrawal (http://mng.bz/11yT). It modifies
the MSBuild item group controlling what build output goes into a package to include
the project references. The following listing shows how you could do this with the Bar
project file.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <TargetsForTfmSpecificBuildOutput>$(TargetsForTfmSpecificBuildOutput);
 CopyProjectReferencesToPackage
 </TargetsForTfmSpecificBuildOutput>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include="../Foo/Foo.csproj" />
 </ItemGroup>

 <Target Name="CopyProjectReferencesToPackage"
 DependsOnTargets="ResolveProjectReferences">
 <ItemGroup>
 <BuildOutputInPackage
 Include="@(_ResolvedProjectReferencePaths)"/>
 </ItemGroup>
 </Target>
</Project>

USING THE NUGET COMMAND TO PACKAGE PROJECT REFERENCES

The nuget command comes with the .NET SDK, but the version installed on your
machine may not be the latest version. To update your NuGet client, use this
command:

nuget update -self

This should verify that you’re running NuGet version 4.0 or higher.
 Now, from the Bar folder, run the following command:

nuget pack Bar.csproj -IncludeReferencedProjects

The IncludeReferencedProjects option tells the .NET SDK to treat project refer-
ences differently than package references. This will cause Foo.dll to be included in
the Bar package.

NOT YET SUPPORTED As of the writing of this book, there’s a bug that causes
the preceding command to fail. The bug is tracked at http://mng.bz/11yT.

Listing 12.4 Project Bar packaging its project references

Executes this custom
target during build

Custom build target
(see section 3.3.2)

BuildOutputInPackage
item group controls what
goes into NuGet package

Includes your
referenced projects

http://mng.bz/11yT
http://mng.bz/11yT

247Preparing a NuGet package
12.1.2 NuGet feeds

If you’d like to have a version of nuget.org for your organization, there are many
options:

 Create a local feed using a file share.
 Build a website and add the NuGet.Server package for hosting a feed on IIS.
 Copy the source code from NuGet Gallery (https://github.com/NuGet/NuGet-

Gallery) to get a site similar to nuget.org using ASP.NET.
 Purchase private feeds, such as

– MyGet
– ProGet
– Artifactory

The simplest way to create a feed is with a file share. There’s no setup involved. For
example, if you have a folder on a file share called \\myfileshare\nuget, you can pub-
lish the Bar package directly to it by going to the bin/Debug folder and executing this
command:

nuget add Bar.1.0.0.nupkg -source \\myfileshare\nuget

You can then add this feed to your global NuGet configuration by running the follow-
ing command:

nuget sources add -Name myfeed -Source \\myfileshare\nuget
nuget sources list

Another option is to add a NuGet.config file to your project or in a folder above the
project. Create a new file called nuget.config with the following contents.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
</configuration>

Now you can add your local feed, or any other feed, to this file with the nuget com-
mand. Here’s an example:

nuget sources add -Name myfeed -Source \\myfileshare\nuget
 -configfile nuget.config

This should alter the nuget.config file to look like the following.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <packageSources>

Listing 12.5 Empty nuget.config file

Listing 12.6 nuget.config file with local feed

List the sources
in the config.

https://github.com/NuGet/NuGetGallery
https://github.com/NuGet/NuGetGallery

248 CHAPTER 12 Preparing for release
 <add key="myfeed" value="\\myfileshare\nuget" />
 </packageSources>
</configuration>

HOW DOES NUGET LOCATE CONFIG FILES? If the nuget.config file is in the folder
you’re running .NET SDK commands from, or in a folder above that (all the
way up to the root), that file will be used as the first configuration file. There
are other global configuration files that will be used afterwards, when a pack-
age reference can’t be found in the earlier configuration files. The .NET SDK
commands will list the NuGet configuration files used if a restore was
performed.

PACKING WITH SYMBOLS OR CODE You may wish to include the debug symbols
with your NuGet package, especially if the package is intended for internal
consumption. Simply add the --include-symbols option to the dotnet
pack command. This will generate an additional NuGet package with a dif-
ferent name—MyLibrary.1.0.0.symbols.nupkg—so you’re not confused about
which one has symbols. Another option, --include-source, also creates
the symbols package and it includes a src folder with the source code.

12.1.3 Packaging resource assemblies

In chapter 10 you learned how to add localized resources to a library. The build sys-
tem will create satellite assemblies for each locale. Unfortunately, the dotnet pack
command won’t automatically recognize these satellite resources assemblies and add
them to your NuGet package. Packaging with localized resources is more of a manual
process—at least at this point in time.

Advanced NuGet features
When building for the .NET Framework, you can assume that most users will install
your NuGet package through Visual Studio. This means that the user has a .NET proj-
ect they’re adding the package to. NuGet has a few advanced features to improve the
user experience in this scenario.

One option is to allow scripts to run when the package is installed or uninstalled.
These scripts are written in Windows PowerShell and can do all sorts of things. For
example, Newtonsoft’s Json.NET has an install script that tells Visual Studio to open
the URL for the Json.NET splash screen. The .NET SDK tools don’t give you the ability
to add scripts, which makes sense because scripting for every operating system
could get tricky.

Another option is to use XML Document Transforms (XDT). A common use of XDT is
to modify the config file of a project. For example, the Microsoft Azure Service Bus
NuGet package will add WCF client configuration to the app.config or web.config file.
But unlike in the .NET Framework, .config files are no longer the one true way to spec-
ify configuration. With so many configuration options available (see chapter 6), this
NuGet feature doesn’t make sense for .NET Core and is therefore not available.

249Signing assemblies
 There are generally two options for packaging resource assemblies. The first
option is to include all the localized resource assemblies in a single package, along
with the default locale. The other is to create a NuGet package for each locale. Both
options have their pros and cons. For simplicity, we’ll look at the first option.

 As you may recall from the examples in chapter 10, the project you created was
called ACController (you can get the code for this project from GitHub at http://
mng.bz/F146). When you execute dotnet pack on this project, you get a nupkg file,
which is a zip file. You can go into this file, extract the ACController.nuspec file, and
place it in the root of the project.

 You’re going to take the ACController package and add the satellite resource
assemblies to it. Create a new folder for the contents of the new package. The name of
the folder doesn’t matter—it just shouldn’t contain anything that you don’t want in
the package. Mine is called pack and has the following contents:

 pack/
 lib/netcoreapp2.0/
 ACController.dll
 ACController.runtimeconfig.json
 ar-SA/
 ACController.resources.dll

Now use the following command from the project folder:

dotnet pack /p:NuspecFile=ACController.nuspec /p:NuspecBasePath=./pack

These steps are a bit cumbersome, but they’ll generate a nupkg with the resource sat-
ellite assemblies inside. In the case of the ACController example, the Arabic resources
are necessary for the application to run.

12.2 Signing assemblies
Earlier in this chapter you created a mock of the Newtonsoft.Json.csproj file. Let’s say
that I’m malicious and want to put some tracking code or a virus into the NuGet pack-
age for Json.NET. It’s easy enough to mock the package, but how would anybody know
if they were getting the real version of Json.NET or my hacked version?

 On nuget.org, you can see the owner of the package. This is one way to verify
authenticity.

 But how can you be assured of the package’s contents? The assemblies in the pack-
age can be signed with strong names, giving you another level of authenticity check-
ing. A strong name proves that an assembly was signed with the developer’s private
key. Unsigned assemblies can’t be verified for authenticity and pose a risk to the user.

 Microsoft signs all of the .NET Framework assemblies with a well-known set of keys
(see listing 12.7 for an example). Very few people in Microsoft have access to the
actual keys. Instead, all signing is handled by a strictly controlled internal system.
Keeping the assembly-signing keys safe is important for any individual or organization
distributing a library.

http://mng.bz/F146
http://mng.bz/F146

250 CHAPTER 12 Preparing for release

System.Core, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089

12.2.1 Generating a signing key

As of the writing of this book, there’s no cross-platform tool for creating signing keys.
The tool used to generate signing keys only works on Windows and is distributed with
the Windows Software Development Kit (SDK). If you’re using Visual Studio, open a
developer command prompt and use the following command to create a new key and
extract the public key:

sn.exe -k mykey.snk
sn.exe -p mykey.snk mykey.public.snk

In order to understand what the public key is for, you’ll have to explore the concept of
delay-signing.

12.2.2 Delay-signing

When a project references a signed assembly, it uses the full name of the assembly (as
shown in listing 12.7). Let’s say you’re a developer working on this assembly— you
shouldn’t need to have a copy of the signing key on your workstation to make changes
to the assembly for internal testing. Changing how projects reference the assembly
every time you switch from internal build to official build isn’t a good strategy either.

 To handle this situation, .NET Framework developers use a technique called delay-
signing. Each signing key is a public/private pair. A step in the build process signs the
assembly with the private key. Projects using the signed assembly can then verify the
signature using the public key. The public key gets stored in the assembly’s manifest.

DELAY SIGNING NOT SUPPORTED BY .NET CORE Delay-signing currently isn’t sup-
ported by .NET Core. This is a very useful feature, so I hope this is fixed soon.

VIEWING AN ASSEMBLY MANIFEST You can view the assembly’s manifest using
another Windows SDK tool called ildasm.exe.

A delay-signed assembly marks the public key in the assembly manifest. This allows
projects referencing the assembly to keep the same full assembly name. But in order
to prevent .NET from rejecting the assembly because the public key doesn’t match the
assembly signature, you need to use the sn.exe tool again to turn off signature verifica-
tion. The following command skips signature verification for an assembly:

sn.exe -Vr myassembly.dll

The unfortunate result of the sn.exe tool only working on Windows is that verification
skipping also only works on Windows, and only with the .NET Framework. The skip-
verification command adds an entry to the Windows registry that the .NET Frame-
work reads before loading assemblies. This same functionality isn’t currently available
in .NET Core.

Listing 12.7 Full name of the System.Core assembly in the .NET Framework

The signing key creates
the public key token.

251Summary
12.2.3 Signing an assembly in .NET Core

With the signing key generated, all you need to do to sign an assembly is modify the
project file, as follows.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <SignAssembly>True</SignAssembly>
 <AssemblyOriginatorKeyFile>mykey.snk
 </AssemblyOriginatorKeyFile>
 </PropertyGroup>
</Project>

If you’re building for the .NET Framework and can use delay-signing, you’d add the
properties shown in the following listing.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netstandard2.0</TargetFramework>
 <SignAssembly>True</SignAssembly>
 <AssemblyOriginatorKeyFile>mykey.public.snk
 </AssemblyOriginatorKeyFile>
 <DelaySign>True</DelaySign>
 </PropertyGroup>
</Project>

Additional resources
To delve deeper into some of the subjects introduced in this book, check out Man-
ning’s other .NET Core books:

 ASP.NET Core in Action by Andrew Lock (Manning, 2018)—http://mng.bz/
DI1O

 Entity Framework Core in Action by Jon P Smith (Manning, 2018)—http://mng.bz
/cOH4

 Xamarin in Action by Jim Bennett (Manning, 2018)—http://mng.bz/bgT5

Summary
In this chapter you learned about NuGet packages and feeds, as well as assembly sign-
ing. These are the key concepts from this chapter:

 Assembly signing is used to verify the authenticity of the assembly.
 There are many kinds of NuGet feeds that can work in your organization.
 Most of the properties shown in nuget.org can be manipulated in the project file.

Listing 12.8 Project file with signing options turned on

Listing 12.9 Project file with delay-signing options turned on

Use the private key
for proper signing.

Uses the public key
for delay-signing

Indicates that the
assembly is delay-signed

http://mng.bz/DI1O
http://mng.bz/DI1O
http://mng.bz/cOH4
http://mng.bz/cOH4
http://mng.bz/bgT5

252 CHAPTER 12 Preparing for release
You also used a few techniques that you should keep in mind when preparing for
release:

 Delay-signing is helpful during development, but it only works on Windows
when targeting the .NET Framework.

 You can use the SN Windows SDK tool to generate signing keys for your assem-
blies.

 A local file share can make a quick and easy NuGet feed.
 NuGet configuration files are simple to construct and to include in source

repositories.

Congratulations on finishing this book! I hope that you’ve acquired enough knowl-
edge of .NET Core to build first-rate libraries and applications. In this last chapter we
covered some of the aspects of releasing your code into the wild. It’s important to
package, distribute, and protect your intellectual property. As you can see from this
chapter, with a few simple steps you can be ready to release your code properly.

appendix A
Frameworks and runtimes

This appendix contains two tables that will be handy if you need to look up a target
framework moniker or runtime identifier for use in your .NET Core applications.

CONSTRUCTING THE RUNTIME IDENTIFIER STRING The runtime identifier string
obeys a hierarchy: linuxmint.17.1-x64 is a child of linuxmint.17.1,
which is a child of linuxmint.17, then linuxmint, and finally linux. If a
runtime doesn’t work, try a more specific version.

Table A.1 Runtimes

OS Flavors Version examples

linux rhel

ol

centos

debian

ubuntu

linuxmint

fedora

openuse

musl (Alpine)

7.0, 7.1, 7.2

7.0, 7.1, 7.2

7

8

14.04, 14.10, 15.04, 15.10, 16.04

17, 17.1, 17.2, 17.3

23

13.2

osx 10.10, 10.11

win win7

win8

win81

win10
253

254 APPENDIX A Frameworks and runtimes
Table A.2 Target frameworks available in .NET CLI

Name Abbreviation Moniker

.NET Framework net net11

net20

net35

net40

net403

net45

net451

net452

net46

net461

net462

net47

net471

net472

net48

.NET Standard netstandard netstandard1.0

netstandard1.1

netstandard1.2

netstandard1.3

netstandard1.4

netstandard1.5

netstandard1.6

netstandard2.0

.NET Core app netcoreapp netcoreapp1.0

netcoreapp1.1

netcoreapp2.0

netcoreapp2.1

appendix B
xUnit command-line options

Because of the way the .NET CLI works, it isn’t obvious that it’s possible to specify
command-line options when running tests. If you execute dotnet test -?, you’ll
only see the help for the dotnet test command. The -? is picked up first by
.NET CLI instead of being passed to the xUnit entry point.

 To see the command-line options for xUnit, you have to look at the code. I’ve
included it here for reference.

Copyright (C) 2015 Outercurve Foundation.

usage: {executableName} <assemblyFile> [configFile] [assemblyFile
 ➥ [configFile]...] [options] [reporter]
 ➥ [resultFormat filename [...]]

Note: Configuration files must end in .json (for JSON) or .config
 (for XML)

Valid options:
 -nologo : do not show the copyright message
 -nocolor : do not output results with colors
 -noappdomain : do not use app domains to run test code
 -failskips : convert skipped tests into failures
 -parallel option : set parallelization based on option
 : none - turn off all
 : parallelization
 : collections - only parallelize
 : collections
 : assemblies - only parallelize
 : assemblies
 : all - parallelize assemblies &
 : collections

Listing B.1 Command-line options for xUnit
255

256 APPENDIX B xUnit command-line options
 -maxthreads count : maximum thread count for collection
 : parallelization
 : default - run with default (1 thread
 : per CPU thread)
 : unlimited - run with unbounded thread
 : count
 : (number) - limit task thread pool size
 : to 'count'
 -noshadow : do not shadow copy assemblies
 -wait : wait for input after completion
 -diagnostics : enable diagnostics messages for all test
 : assemblies
 -debug : launch the debugger to debug the tests
 -serialize : serialize all test cases (for diagnostic
 : purposes only)
 -trait "name=value" : only run tests with matching name/value
 : traits if specified more than once, acts
 : as an OR operation
 -notrait "name=value" : do not run tests with matching name/value
 : traits if specified more than once, acts
 : as an AND operation
 -method "name" : run a given test method (should be fully
 : specified;
 : i.e., 'MyNamespace.MyClass.MyTestMethod')
 : if specified more than once, acts as an OR
 : operation
 -class "name" : run all methods in a given test class
 : (should be fully specified; i.e.,
 : 'MyNamespace.MyClass') if specified more
 : than once, acts as an OR operation
 -namespace "name" : run all methods in a given namespace
 : (i.e., 'MyNamespace.MySubNamespace')
 : if specified more than once, acts as an OR
 : operation

Reporters: (optional, choose only one)
 -appveyor : forces AppVeyor CI mode (normally
 : auto-detected)
 -json : show progress messages in JSON format
 -quiet : do not show progress messages
 -teamcity : forces TeamCity mode (normally
 : auto-detected)
 -verbose : show verbose progress messages

Result formats: (optional, choose one or more)
 -xml : output results to xUnit.net v2 XML file

Note that the method, class, and namespace options give you the ability to execute
specific test cases.

appendix C
What’s in the

.NET Standard Library?

.NET Framework developers who are looking to port to .NET Core may wonder
what’s supported in each version of the .NET Standard Library. This section gives a
general description of what’s supported by each version. If you’re not familiar with
the .NET Framework, this section will still be useful as an indication of what’s avail-
able in the Standard Library.

netstandard 1.0
 Collections
 Globalization
 Generic I/O (streams)
 Linq
 Networking primitives
 Reflection
 Regular expressions
 Threads
 Tasks
 XML reader/writer
 XML document

netstandard 1.1
Includes everything in 1.0 plus

 Concurrent collections
 ETW support
 Zip/Deflate compression (not zip files)
257

258 APPENDIX C What’s in the .NET Standard Library?
 HTTP
 Numerics (BigInteger and Complex)
 Parallel Linq

netstandard 1.2
Includes everything in 1.1 plus thread timers

netstandard 1.3
Includes everything in 1.2 plus

 AppContext (used to opt out of functionality)
 Console output
 Globalization calendars
 Zip file compression
 File I/O
 Sockets
 Cryptography

netstandard 1.4
Includes everything in 1.3 plus isolated storage

netstandard 1.5
Includes everything in 1.4 plus AssemblyLoadContext

netstandard 1.6
Includes everything in 1.5 plus OpenSSL cryptography

netstandard 2.0
Includes everything in 1.6 plus

 XML
– XLinq
– XmlDocument
– XPath
– Schema
– XSL

 Serialization
 BinaryFormatter
 DataContract
 XML
 Data
 Abstractions
 Provider Model

259netstandard 2.0
 DataSet
 Networking
 Sockets
 HTTP
 Mail
 WebSockets
 Memory-mapped files
 Thread pools

260

appendix D
NuGet cache locations

There are two caches used by NuGet. The first cache holds the nupkg files down-
loaded from the feed. You’ll find those nupkg files here:

 Mac and Linux: ~/.local/share/NuGet/Cache
 Windows: %LocalAppData%\NuGet\Cache

The second cache holds the files extracted from the .nupkg files. This is the cache
NuGet will use during build time. These are the folders:

 Mac and Linux: ~/.nuget/packages
 Windows: %UserProfile%\.nuget\packages

index
Symbols

--framework option 35
-p parameters 46
!clrstack -a command 167
!da command 169
!do command 168–169
!dumpheap -stat command 169
!help command 170
<RuntimeIdentifiers> property 202

A

ACController 197
ACID transactions 91
AddConsole() method 205
AddImplementation method 114
AddInMemoryCollection method 124
AddJsonFile method 124
AddParameter method 87
AddRobust method 204
AddTransient method 120
AfterTargets attribute 40
AggregateException 160, 167
anonymous method 21, 109
AppDomains 12
applications

building 196–221
configuring 122–126
debugging with Visual Studio Code

overview of 156–158
using .NET Core debugger 158–160

globalization and 219
international 197–201
localization of 219

logging frameworks vs writing to consoles
202–209

globalization 207–208
internationalization 207
localizability review 208–209
Microsoft .Extensions.Logging libraries

204–207
Microsoft localization extensions libraries

209–219
EventListener to listen for events 216–219
EventSource to emit events 214–216
invariant culture 213–214
testing right-to-left languages 211

publishing 23–24
self-contained, publishing 23–24
test applications, creating 174–177

ar-SA culture code 213
ASP.NET Core

outperforming ASP.NET in .NET Framework
3–4

performance of 9–10
web applications, creating 18–21

running Hello World web applications 21
using Kestrel web server 19
using Startup class to initialize web

servers 20–21
websites, creating from templates 22

ASP.NET web services
creating 136–138
writing 135–139

converting Markdown to HTML 135–136
testing web services with Curl 139

assemblies
packaging resource assemblies 248–249
signing 249–251

delay-signing 250
261

INDEX262
assemblies (continued)
generating signing keys 250
in .NET Core 251

AssemblyLoadContext 258
asynchronous services 141–142
Azure Blob Storage

data from 142–148
creating GetBlob methods 144–147
getting values from configuration 142–144

testing storage operation 147–148

B

BigInteger 258
Bing Translate 220
BLOBs

deleting 152
listing 150–151

build system 32–36
creating .NET projects from command lines 33
MSBuild, overview of 33
terminology for 33–36

.NET Standard 35
frameworks 34–35
platforms 35–36
runtimes 35

C

C# language 5
caches, NuGet locations 260
Calculator class 50
CAP theorem 85
child process 191
class fixtures, xUnit tests sharing context with

62–63
class option 256
CLI (Command-Line Interface) 11, 15
CLR (Common Language Runtime) 5
code, specifying relationships in 80–84
collection fixtures, xUnit tests sharing context

with 63, 65
command lines, creating .NET projects from 33
Command Query Responsibility Segregation

(CQRS) 85
Command-Line Interface (CLI) 11, 15
Common Language Runtime (CLR) 5
Compile ItemGroup 41
Condition parameter 46
configuration

values from 142–144
Visual Studio 2017 plugins 224

Console.ReadKey() method 194
Console.ReadLine 171

Console.WriteLine 65
ConsoleEventListener 216
consoles, writing to 202–209
constructor, for xUnit test setup 57–60
containers

listing 150–151
overview of 8–9

contentLen 149
context, shared between xUnit tests 57–65

constructor for setup 57–60
Dispose for cleanup 60–62
sharing context with class fixtures 62–63
sharing context with collection fixtures 63–65

Controller class 204
Convert method 141
copying files, with ItemGroups 42–43
CPU profiles

analyzing 187–191
overview of 184–187

CQRS (Command Query Responsibility
Segregation) 85

CreateOrder method 109
CreatePartCommand method 86
CSV parser, sample project 36–39
CsvWriterPerfTests 178
culture, invariant 213–214
CultureInfo.DefaultThreadCurrentCulture

property 202
CultureInfo.DefaultThreadCurrentUICulture

property 202
Curl tool, testing web services with 139
CurrentCulture 202
CurrentUICulture 202

D

Dapper framework 105–126
applying transactions to Dapper

commands 109–110
building data-access layers 126
configuring applications 122–126
DI (dependency injection)

in .NET Core 114–122
overview of 112–114

drawbacks of micro-ORM 110–112
inserting rows with 108

DapperDi folder 158
data

from Azure Blob Storage 142–148
creating GetBlob methods 144–147
getting values from configuration 142–144
testing Azure storage operation 147–148

performance data, collecting on Linux 194
simplifying access with ORM 104–133

Dapper 105–126
EF (Entity Framework) Core 127–132

INDEX 263
specifying relationships in 80–84
updating 84–87
uploaded, receiving 148–150
uploading 148–150

data-access libraries, creating 76–93
managing inventories 89–91
specifying relationships in code 80–84
specifying relationships in data 80–84
updating data 84–87
using transactions for consistency 91–93

DataAccessFactory class 111
database normalization 86
databases

creating with migrations 129–130
planning schema 72–76

creating tables in SQLite 73–76
tracking inventories 72–73

DbDataReader 78
DbSet class 128
DbTransaction method 97
DbType parameter 87
debugging 155–172

applications with Visual Studio Code
overview of 156–158
using .NET Core debugger 158–160

self-contained applications 164–166
with SOS (Son of Strike) extensions 163–171

getting started with self-contained
applications 164–166

LLDB debugger 170–171
WinDBG/CDB debugger 166–170

with Visual Studio 2017 160–162
with Visual Studio for Mac 162–163

default parameters 150
delay-signing 250
deleting BLOBs 152
dependencies 33, 44–45
deploying 7–8

to Docker containers 25–26
to servers 22–27

deploying to Docker containers 25–26
packaging for distribution 26–27
publishing applications 23–24

web applications 25–26
design patterns 112
development environments

running tests from 54
trouble with 15–16

development storage 144
development tools 27–30

OmniSharp
for Visual Studio Code 28
overview of 27–28

Visual Studio 2017 28
Visual Studio for Mac 28

DI (dependency injection)
in .NET Core 114–122
overview 112–114
using Microsoft DI library without adding

dependencies 122
Dispose

for xUnit test cleanup 60–62
patterns

in xUnit tests 61–62
overview of 60–61

Distributed Transaction Coordinator (DTC) 99
distribution, packaging for 26–27
Docker containers

building 17
deploying to 25–26

dotnet build command 40
dotnet new classlib command 49
dotnet new console command 17
dotnet new mvc command 22
dotnet new xunit command 52
dotnet pack command 27, 245, 248
dotnet publish command 23
dotnet restore command 18
dotnet run command 18, 187
dotnet test command 53, 255
DTC (Distributed Transaction Coordinator) 99
dumping object contents 168

E

EF (Entity Framework) Core 127–132
creating databases with migrations 129–130
running tests with 130–132

EfScmContext class 128
EmbeddedResourceitem 200
embedding files, in projects 43–44
emitting events, with EventSource 214–216
Enum.Parse() method 88
enumerations 88
ETW (Event Tracing for Windows) 184, 214
EventChannel class 233
EventListener, to listen for events 216–219
EventProvider, EventSource to replace 230–233
events

EventListener to listen for 216–219
EventSource to emit 214–216

EventSource
to emit events 214–216
to replace EventProvider 230–233

eventual consistency 84
exceptions

exposing 192–194
stopping debugger when thrown 166
viewing contents of 167

Exceptions Stacks window, PerfView 193

INDEX264
exclamation marks 170
exclusive costs 188
Execute method 109
ExecuteNonQuery 75
ExecuteScalar 71
extension method 44
.Extensions.Logging libraries 204–207

F

[Fact] attribute 53
files

embedding in projects 43–44
ItemGroups to copy 42–43

First() method 80
Foo property 40
foreach loop 118
framework-dependent deployment 23
frameworks 253

defined 34–35
overview of 223
supporting multiple 222–224, 230–241

adding frameworks to projects 233–235
creating NuGet packages and checking

contents 235
EventSource to replace EventProvider 230–233
per-framework build options 235–237

targeting multiple 45

G

GC (garbage collection), examining
information 191–192

GetAuthHeader method 146
GetBlob methods, creating 144–147
GetCurrentProcessId method 238
GetRequiredService method 122
GetResponseStream method 226
GetScmContext method 111
GetType() method 87
GetTypeInfo method 44
globalizing applications 207–208, 219
Google Translate 220

H

Hello World console applications
creating

overview of 17–18
preparation for 18

running .NET Core applications 18
Hello World web applications, running 21
HTML, converting Markdown to 135–136
HTTP calls

making services asynchronous 141–142

overview of 139–141
HttpDelete operation 153
HttpGet method 139
HttpPost method 139
hydrate 77

I

IClassFixture interface 64
IConfigurationRoot interface 125
Id property 95
id property 245
idempotent 149
IDisposable interface 61
IEnumerable property 82
IMarkdownEngine object 138
include-symbols option 248
IncludeReferencedProjects option 246
inclusive costs 188
initializing web servers, with Startup classes 20–21
InnerIterationCount 181
INSERT SQL statement 108
installing

.NET Core SDK 16–17
building .NET Core Docker containers 17
on Linux-based operating systems 16
on Mac operating systems 16
on Windows operating systems 16

Visual Studio 2017 plugins 224
IntelliTrace 162
internationalizing applications 197–201, 207
InvalidCastException 78
invariant culture 213–214
inventories

managing 89–91
tracking 72–73

InventoryItem table 73
IRule interface 51
IScmContext 111
IsFx property 46
IStringLocalizer interface 210
ItemGroups 41–44

embedding files in projects 43–44
to copy files to build output 42–43

ITestOutputHelper interface 65

J

JIT (just-in-time) 5

K

Kestrel web server, ASP.NET Core web applications
with 19

KeyValuePair 38

INDEX 265
L

Language Integrated Query (LINQ) 5
languages, right-to-left 211–212
last_insert_rowid() function 87, 110
layers, data-access layers 126
lazy-loading 84
libraries

expanding reach of 6–7
Microsoft localization extension libraries

209–219
EventListener to listen for events 216–219
EventSource to emit events 214–216
invariant culture 213–214
testing right-to-left languages 211–212

LINQ (Language Integrated Query) 5
Linux operating systems

collecting performance data on 194
installing .NET Core SDK on 16
LLDB debugger on 171

listening for events, with EventListener 216–219
listing

BLOBs 150–151
containers 150–151

LLDB debugger 170–171
on Linux operating systems 171
on Mac operating systems 170

local variables, viewing on current thread 167
LocalizationResources property 215
localizing applications

localizability review 208–209
overview of 219

LoggerEventListener 218
logging frameworks, vs. writing to console 202–209

globalization 207–208
internationalization 207
localizability review 208–209
Microsoft .Extensions.Logging libraries 204–207

LogStatus method 215

M

Mac operating systems
installing .NET Core SDK on 16
LLDB debugger on 170
Visual Studio for 28

Main method 171
Markdown, converting to HTML 135–136
markSqliteScmContext 119
MdlController class 143
MemberData attribute 56
memory investigations 192
memory, examining managed memory

heaps 169–170
metapackages 45

micro-ORM 105
microservices, creating 134–154

deleting BLOBs 152
getting data from Azure Blob Storage 142–148
listing BLOBs 150–151
listing containers 150–151
making HTTP calls 139–142
receiving uploaded data 148–150
uploading data 148–150
writing ASP.NET web services 135–139

Microsoft.Data.SqliteConnection 75
Microsoft.DocAsCode.MarkdownLite 135
Microsoft.Extensions library 202
Microsoft.Extensions.Configuration library 126
Microsoft.Extensions.DependencyInjection

.Abstractions package 122
Microsoft.Extensions.Logging library 202
migrations, creating databases with 129–130
MSBuild

conditions 45
custom tasks 157
ItemGroups 41–44

embedding files in projects 43–44
to copy files to build output 42–43

overview of 27, 33, 39–44
PropertyGroups 39–40
targets 40

N

namespace option 256
.NET Core

applying to real-world applications 11
benefits of 1–14

architecting enterprise applications 2–3
for .NET Framework developers 3–4
for new users 4–5

debugging applications with Visual Studio
Code 158–160

differences from .NET Framework 12–13
changes to .NET reflection 13
Framework features not ported to Core 12
subtle changes for .NET Framework

developers 12–13
installing SDK 16–17

building .NET Core Docker containers 17
on Linux-based operating systems 16
on Mac operating systems 16
on Windows operating systems 16

key features of 6–11
ASP.NET performance 9–10
clouds 8–9
containers 8–9
expanding reach of libraries 6–7
open source 10–11

INDEX266
.NET Core (continued)
simple deployment 7–8
tools 11

overview of 5–6
running applications 18

.NET Framework
benefits of .NET Core for developers of 3–4

ASP.NET Core outperforms ASP.NET in .NET
Framework 3–4

cross-platform .NET apps 3
faster release cycles 4
innovation with 4

differences from .NET Core 12–13
changes to .NET reflection 13
Framework features not ported to Core 12
subtle changes for .NET Framework

developers 12–13
sample projects 225–226

.NET Portability Analyzer 224–230
installing and configuring Visual Studio 2017

plugins 224
overview of 13
running Portability Analyzer in Visual

Studio 226–230
sample .NET Framework projects 225–226

.NET Standard
defined 35
Library 257–258

netcoreapp framework 38
new operator 113
New Project wizard, Visual Studio 2017 29
normalization 86
nuget command, to package project

references 246
NuGet packages

cache locations 260
checking contents of 235
creating 235
preparing 242–249

handling project references 244–246
NuGet feeds 247
packaging resource assemblies 248–249

NullReferenceException 96, 158, 167
nupkg files 260

O

objects, dumping contents 168
OmniSharp 27–28

for Visual Studio Code 28
overview of 54

open source 10–11
OpenSSL cryptography 258
ORM (object-relational mappers)

drawbacks of micro-ORM 110–112

overview of 105
simplifying data access with 104–133

Dapper 105–126
EF (Entity Framework) Core 127–132

OutOfMemoryException 169
output

building, ItemGroups to copy files 42–43
from xUnit tests

applying traits 66
overview of 65–66

OutputType property 18

P

PackageReferences 44
packaging

for distribution 26–27
project references

with nuget command 246
with workarounds 246

resource assemblies 248–249
params keyword 175
PartCountOperation 86
PartType table 73
patches 8
PerfTests class 179
PerfView application, on .NET Core

applications 184–194
analyzing CPU profiles 187–191
collecting performance data on Linux 194
examining GC information 191–192
exposing exceptions 192–194
getting CPU profiles 184–187

PerfView stack frames 190
platforms, defined 35–36
plugin load command 170
Portability Analyzer, running in Visual

Studio 226–230
PostAsync method 141
preprocessor directive 233
Print Exception command 167
project references 244–246

nuget command to package 246
workarounds to package 246

project.json 33
ProjectReference 44
PropertyGroups 39–40
prototyping, SQLite for 70–71
publishing applications

overview of 23–24
self-contained 23–24

INDEX 267
R

Rapidoid 9
ReadAsStringAsync method 141
ReadLine method 37
ReadParts method 82, 106
refactoring 49
reference type 100
RegionInfo.IsMetric property 219
relational databases 69–103

creating data-access libraries 76–93
managing inventories 89–91
specifying relationships in code 80–84
specifying relationships in data 80–84
updating data 84–87
using transactions for consistency 91–93

planning database schema 72–76
creating tables in SQLite 73–76
tracking inventories 72–73

SQLite for prototyping 70–71
relationships

specifying in code 80–84
specifying in data 80–84

release
cycles of 4
preparing for 242–252

preparing NuGet packages 242–249
signing assemblies 249–251

requireExactSource flag 157
ResourceManager class 199, 209
RobustLogger.IsEnabled method 212
RobustLoggerExtension class 204
rows, inserting with Dapper 108
Run dialog box, PerfView 186
runtime identifier string 253
runtime-specific assemblies 35
RuntimeIdentifiers property 23, 35, 238
runtimes

defined 35
multiple 222–241
overview of 223, 253
runtime-specific code 238

S

SampleScmDataFixture 75
SampleScmDataFixture class 123
scaling 11
ScmContext class 82, 86
ScmContext object 80
SCOPE_IDENTITY() function 110
SDK (Software Development Kit) 250
Select Process dialog box, PerfView 187
self-contained applications, publishing 23–24
servers, deploying to 22–27

deploying to Docker containers 25–26
packaging for distribution 26–27
publishing applications 23–24

Set Symbol Path dialog, PerfView 186
signing assemblies 249–251

delay-signing 250
generating signing keys 250
in .NET Core 251

SimpleWriter class 174
single responsibility principle 48
singleton 120
Software Development Kit (SDK) 250
SOLID software design principles 48
solid state disks (SSDs) 181
SOS (Son of Strike) extensions, debugging

with 163–171
getting started with self-contained

applications 164–166
LLDB debugger 170–171
WinDBG/CDB debugger 166–170

SQL injection 96
SQLite library

creating tables in 73–76
for prototyping 70–71

SqliteCommand objects 82
SqliteScmContext 111
SqliteScmTest 74
SSDs (solid state disks) 181
Stack Overflow 9
stacks

overview of 184
viewing on current thread 167

Startup classes, to initialize web servers 20–21
StopWatch class 180
StreamContent 140
symbols, matching 186
System.Collections library 4
System.Data.Common namespace 75
System.Data.Common.DbConnection 75
System.Data.Common.DbDataReader class 78
System.IO.Compression library 223
System.IO.TextReader 37
System.Reflection namespace 44
System.Xml.XmlSerializer class 194

T

tables
creating in SQLite 73–76
overview of 72

target framework monikers (TFMs) 44
TargetFramework property 34, 46
targets, MSBuild 40
TDD (test-driven development) 177
TechEmpower 9

INDEX268
Telemetry class 204
templates, creating ASP.NET Core websites

from 22
ternary operator 101
Test method 203
test-driven development (TDD) 177
testing

Azure storage operation 147–148
performance, with xUnit.Performance 177–184
right-to-left languages 211–212
web services, with Curl 139

tests, running with EF Core 130–132
TFMs (target framework monikers) 44
toCommit() method 93
ToString method 184
tracking inventories 72–73
traits, applying to xUnit tests 66
transactional databases 91
transactions

applying to Dapper commands 109–110
for consistency 91–93

truth, evaluating with xUnit facts 52–54
TypeInfo class 13
typeof() operator 44

U

Undertow 9
Universal Windows Platform (UWP) 6
updating data 84–87
uploading data 148–150
using statement 61
UWP (Universal Windows Platform) 6

V

value types 100
verbatim string 38
Visual Studio

2017 version 28
debugging with 160–162
installing and configuring plugins 224

for Mac
debugging with 162–163
overview of 28

running Portability Analyzer in 226–230
Visual Studio Code

debugging applications with
overview of 156–158
using .NET Core debugger 158–160

OmniSharp for 28

W

Wait() method 230
web applications, deploying 25–26
web servers, Startup classes to initialize 20–21
web services, testing with Curl 139
WF (Workflow Foundation) 12
WidgetScmDataAccess 74, 85
WidgetScmDataAccess library 76
WinDBG/CDB debugger 166–170

CDB commands 170
dumping object contents 168
examining managed memory heap 169–170
stopping debugger when exception is

thrown 166
viewing contents of exceptions 167
viewing local variables on current thread 167
viewing stacks on current thread 167

Windows operating systems, installing .NET Core
SDK on 16

Windows Presentation Foundation (WPF) 12
workarounds, to package project references 246
Workflow Foundation (WF) 12
WPF (Windows Presentation Foundation) 12
WriteLine method 65, 184
WriteLog method 184

X

xcopy-deployable 8
XDT (XML Document Transforms) 248
xUnit tests

evaluating truth with xUnit facts 52–54
getting output from

applying traits 66
overview of 65–66

overview of 48, 51–68
purpose of 48–49
running tests from development

environments 54
setting up test projects 52
shared context between 57–65

constructor for setup 57–60
Dispose for cleanup 60–62
sharing context with class fixtures 62–63
sharing context with collection fixtures 63–65

using theory 55–57
xUnit, command-line options 255–256
xUnit.net 52
xUnit.Performance, running performance tests

with 177–184
xunit.runner.visualstudio package 53

Dustin Metzgar

.NET Core is an open source framework that lets you write
and run .NET applications on Linux and Mac, with-

out giving up on Windows. Built for everything from light-
weight web apps to industrial-strength distributed systems,
it’s perfect for deploying .NET servers to any cloud platform,
including AWS and GCP.

.NET Core in Action introduces you to cross-platform develop-
ment with .NET Core. This hands-on guide concentrates
on new Core features as you walk through familiar tasks like
testing, logging, data access, and networking. As you go, you’ll
explore modern architectures like microservices and cloud data
storage, along with practical matters like performance profi l-
ing, localization, and signing assemblies.

What’s Inside
● Choosing the right tools
● Testing, profi ling, and debugging
● Interacting with web services
● Converting existing projects to .NET Core
● Creating and using NuGet packages

All examples are in C#.

Dustin Metzgar is a seasoned developer and architect involved
in numerous .NET Core projects. Dustin works for Microsoft.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/dotnet-core-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

.NET Core IN ACTION

.NET DEVELOPMENT

M A N N I N G

“A great on-ramp to the
world of .NET and

.NET Core. You’ll learn the
why, what, and how of

building systems on
this new platform.”
—From the Foreword by

Scott Hanselman, Microsoft

“Covers valuable use cases
such as data access, web app

development, and deployment
to multiple platforms.”—Viorel Moisei

Gabriels Technology Solutions

“Teaches you to write code
that ports across all platforms;
also includes tips for porting
legacy code to .NET Core.”

—Eddy Vluggen, Cadac

“Covers all the new tools
and features of .NET Core.

 Brain-friendly.”
—Tiklu Ganguly, ITC Infotech

See first page

	.NET Core in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Book forum
	Online resources

	about the author
	about the cover illustration
	1 Why .NET Core?
	1.1 Architecting enterprise applications before .NET Core
	1.2 If you’re a .NET Framework developer
	1.2.1 Your .NET apps can be cross-platform
	1.2.2 ASP.NET Core outperforms ASP.NET in the .NET Framework
	1.2.3 .NET Core is the focus for innovation
	1.2.4 Release cycles are faster

	1.3 If you are new to .NET
	1.3.1 C# is an amazing language
	1.3.2 .NET Core is not starting from scratch
	1.3.3 Focus on performance

	1.4 What is .NET Core?
	1.5 Key .NET Core features
	1.5.1 Expanding the reach of your libraries
	1.5.2 Simple deployment on any platform
	1.5.3 Clouds and containers
	1.5.4 ASP.NET performance
	1.5.5 Open source
	1.5.6 Bring your own tools

	1.6 Applying .NET Core to real-world applications
	1.7 Differences from the .NET Framework
	1.7.1 Framework features not ported to Core
	1.7.2 Subtle changes for .NET Framework developers
	1.7.3 Changes to .NET reflection

	Additional resources
	Summary

	2 Building your first .NET Core applications
	2.1 The trouble with development environments
	2.2 Installing the .NET Core SDK
	2.2.1 Installing on Windows operating systems
	2.2.2 Installing on Linux-based operating systems
	2.2.3 Installing on macOS
	2.2.4 Building .NET Core Docker containers

	2.3 Creating and running the Hello World console application
	2.3.1 Before you build
	2.3.2 Running a .NET Core application

	2.4 Creating an ASP.NET Core web application
	2.4.1 ASP.NET Core uses the Kestrel web server
	2.4.2 Using a Startup class to initialize the web server
	2.4.3 Running the Hello World web application

	2.5 Creating an ASP.NET Core website from the template
	2.6 Deploying to a server
	2.6.1 Publishing an application
	2.6.2 Deploying to a Docker container
	2.6.3 Packaging for distribution

	2.7 Development tools available for .NET Core
	2.7.1 OmniSharp
	2.7.2 Visual Studio for Mac
	2.7.3 Visual Studio 2017

	Additional resources
	Summary

	3 How to build with .NET Core
	3.1 Key concepts in .NET Core’s build system
	3.1.1 Introducing MSBuild
	3.1.2 Creating .NET projects from the command line
	3.1.3 Clearing up the terminology

	3.2 CSV parser sample project
	3.3 Introducing MSBuild
	3.3.1 PropertyGroups
	3.3.2 Targets
	3.3.3 ItemGroups

	3.4 Dependencies
	3.5 Targeting multiple frameworks
	Additional resources
	Summary

	4 Unit testing with xUnit
	4.1 Why write unit tests?
	4.2 Business-day calculator example
	4.3 xUnit—a .NET Core unit-testing framework
	4.4 Setting up the xUnit test project
	4.5 Evaluating truth with xUnit facts
	4.6 Running tests from development environments
	4.7 When it’s impossible to prove all cases, use a theory
	4.8 Shared context between tests
	4.8.1 Using the constructor for setup
	4.8.2 Using Dispose for cleanup
	4.8.3 Sharing context with class fixtures
	4.8.4 Sharing context with collection fixtures

	4.9 Getting output from xUnit tests
	4.10 Traits
	Additional resources
	Summary

	5 Working with relational databases
	5.1 Using SQLite for prototyping
	5.2 Planning the application and database schema
	5.2.1 Tracking inventory
	5.2.2 Creating tables in SQLite

	5.3 Creating a data-access library
	5.3.1 Specifying relationships in data and code
	5.3.2 Updating data
	5.3.3 Managing inventory
	5.3.4 Using transactions for consistency

	5.4 Ordering new parts from suppliers
	5.4.1 Creating an Order
	5.4.2 Checking if parts need to be ordered

	Additional resources
	Summary

	6 Simplify data access with object-relational mappers
	6.1 Dapper
	6.1.1 Inserting rows with Dapper
	6.1.2 Applying transactions to Dapper commands
	6.1.3 The drawback of a micro-ORM
	6.1.4 A brief introduction to dependency injection
	6.1.5 Dependency injection in .NET Core
	6.1.6 Configuring the application
	6.1.7 When to build your own data-access layer

	6.2 Entity Framework Core
	6.2.1 Using EF migrations to create the database
	6.2.2 Running the tests using EF

	Additional resources
	Summary

	7 Creating a microservice
	7.1 Writing an ASP.NET web service
	7.1.1 Converting Markdown to HTML
	7.1.2 Creating an ASP.NET web service
	7.1.3 Testing the web service with Curl

	7.2 Making HTTP calls
	7.3 Making the service asynchronous
	7.4 Getting data from Azure Blob Storage
	7.4.1 Getting values from configuration
	7.4.2 Creating the GetBlob method
	7.4.3 Testing the new Azure storage operation

	7.5 Uploading and receiving uploaded data
	7.6 Listing containers and BLOBs
	7.7 Deleting a BLOB
	Additional resources
	Summary

	8 Debugging
	8.1 Debugging applications with Visual Studio Code
	8.1.1 Using the .NET Core debugger

	8.2 Debugging with Visual Studio 2017
	8.3 Debugging with Visual Studio for Mac
	8.4 SOS
	8.4.1 Easier to get started with a self-contained app
	8.4.2 WinDBG/CDB
	8.4.3 LLDB

	Additional resources
	Summary

	9 Performance and profiling
	9.1 Creating a test application
	9.2 xUnit.Performance makes it easy to run performance tests
	9.3 Using PerfView on .NET Core applications
	9.3.1 Getting a CPU profile
	9.3.2 Analyzing a CPU profile
	9.3.3 Looking at GC information
	9.3.4 Exposing exceptions
	9.3.5 Collecting performance data on Linux

	Additional resources
	Summary

	10 Building world-ready applications
	10.1 Going international
	10.1.1 Setting up the sample application
	10.1.2 Making the sample application world-ready

	10.2 Using a logging framework instead of writing to the console
	10.2.1 Using the Microsoft .Extensions.Logging library
	10.2.2 Internationalization
	10.2.3 Globalization
	10.2.4 Localizability review

	10.3 Using the Microsoft localization extensions library
	10.3.1 Testing right-to-left languages
	10.3.2 Invariant culture
	10.3.3 Using EventSource to emit events
	10.3.4 Using EventListener to listen for events

	10.4 Other considerations for globalization
	10.5 Localization
	Additional resources
	Summary

	11 Multiple frameworks and runtimes
	11.1 Why does the .NET Core SDK support multiple frameworks and runtimes?
	11.2 .NET Portability Analyzer
	11.2.1 Installing and configuring the Visual Studio 2017 plugin
	11.2.2 Sample .NET Framework project
	11.2.3 Running the Portability Analyzer in Visual Studio

	11.3 Supporting multiple frameworks
	11.3.1 Using EventSource to replace EventProvider
	11.3.2 Adding another framework to the project
	11.3.3 Creating a NuGet package and checking the contents
	11.3.4 Per-framework build options

	11.4 Runtime-specific code
	Additional resources
	Summary

	12 Preparing for release
	12.1 Preparing a NuGet package
	12.1.1 How to handle project references
	12.1.2 NuGet feeds
	12.1.3 Packaging resource assemblies

	12.2 Signing assemblies
	12.2.1 Generating a signing key
	12.2.2 Delay-signing
	12.2.3 Signing an assembly in .NET Core

	Additional resources
	Summary

	appendix A Frameworks and runtimes
	appendix B xUnit command-line options
	 appendix C What’s in the .NET Standard Library?
	netstandard 1.0
	netstandard 1.1
	netstandard 1.2
	netstandard 1.3
	netstandard 1.4
	netstandard 1.5
	netstandard 1.6
	netstandard 2.0

	appendix D NuGet cache locations
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	.NET Core in Action - back

